Have a personal or library account? Click to login
Stable isotope geochemistry and petrography of the Qorveh–Takab travertines in northwest Iran Cover

Stable isotope geochemistry and petrography of the Qorveh–Takab travertines in northwest Iran

Open Access
|Sep 2018

References

  1. Anzalone, E., Ferreri, V., Sprovieri, M., D’Argenio, B.D., 2007. Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Advances in Water Resources, 30, 2159-2175. https://doi.org/10.1016/j.advwatres.2006.09.00810.1016/j.advwatres.2006.09.008
  2. Atabey, E., 2002. The formation of fissure-ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis, Kirşehir central Anatolia. Bulletin of The Mineral Research and Exploration, 123-124, 59-65.
  3. Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, R.C., Moore, F., 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralia Deposita, 42, 799-820. https://doi.org/10.1007/s00126-007-0144-410.1007/s00126-007-0144-4
  4. Burman, J., Gustafsson, O., Segl, M., Schmitz B., 2005. A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry, 19, 3086-3088. https://doi.org/10.1002/rcm.215910.1002/rcm.2159
  5. Casanova, J., 1986. Les stromatolites continentaux: paleoecologie, paleohydrologie, paleoclimatologie. Application au rift Gregory. Doctoral Thesis. Universite´ d’Aix Marseille. France, 70 pp.
  6. Chafetz, H.S. and Folk, R.L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54, 289-316.10.1306/212F8404-2B24-11D7-8648000102C1865D
  7. Chafetz, H.S. and Lawrence, J.R., 1994. Stable isotopic variability within modern travertines. Geographie physique et Quaternaries, 48, 257-273.10.7202/033007ar
  8. D’Argenio, B. and Ferreri,V. 1992. Ambienti di deposizione e litofacies dei travertine quaternari dell’Italia centro-meridionale. Memorie della Società geologica Italiana, 41,861-868.
  9. Gandin, A. and Capezzuoli, E., 2014. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Journal of Sedimentology, 61, 264-290. https://doi.org/10.1111/sed.1208710.1111/sed.12087
  10. Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26, 683-693. https://doi.org/10.1016/j.jseaes.2005.01.00310.1016/j.jseaes.2005.01.003
  11. GSI (Geological Survey of Iran), 1999. Geology maps of Ghorveh and Kabudar Press, Ahang regions, western Iran: a digitized final map at 1:100,000 scale, Teheran.
  12. Guo, L.I. and Riding, R., 1998. Hot-Spring Travertine Facies and Sequences, late Pleistocene, Rapolano Terme, Italy. Journal of Sedimentology, 45, 163-180.10.1046/j.1365-3091.1998.00141.x
  13. Hoefs, J., 2004. Stable Isotope Geochemistry. 5th Edition. Berlin, Germany: Springer-Verlag. 244 pp.10.1007/978-3-662-05406-2
  14. Inskeep, W.P. and McDermott, T.R., 2005. Geothermal Biology and Geochemistry in Yellowstone National Park. Eds., Bozeman MT, USA: Montana State University Publications.
  15. Jones, B. and Renaut, R.W., 2010. Calcareous spring deposits in continental settings. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds), Carbonates in Continental Settings. Facies Environments and Processes, Elsevier, Amsterdam, pp. 177-224.10.1016/S0070-4571(09)06104-4
  16. Kalender, L., Oztekin-Okan, O., İnceoz, M., Çetindağ, B., Yildirim, V., 2015. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the
  17. Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, Turkey. Turkish Journal of Earth Sciences, 24, 607-626. https://doi.org/10.3906/yer-1504-2710.3906/yer-1504-27
  18. Karimi Nezhad, M.T., Ghahroudi Tali, M., Hashemi Mahmoudi, M., Pazira, E., 2010. Spatial variability of Sc and Cd concentrations in relation to land use, parent material and soil properties in topsoils of Northern Ghorveh, Kurdistan Province, Iran. World Applied Sciences Journal, 11, 1105-1113.
  19. Kele, S., Demény, A., Siklósy, Z., Németh, T., Tóth, M., Kovács, M.B., 2008. Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sedimentary Geology, 211, 53-72. https://doi.org/10.1016/j.sedgeo.2008.08.00410.1016/j.sedgeo.2008.08.004
  20. Kele, S., Ozkul, M., Forizs, I., Gokgoz, A., Baykara, M.O., Alcicek, M.C., Nemeth, T., 2011. Stable isotope geochemical study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcite-water fractionation. Sedimentary Geology, 238, 191-212. https://doi.org/10.1016/j.sedgeo.2011.04.01510.1016/j.sedgeo.2011.04.015
  21. Kele, S., Vaselli, O., Szabo, C., Minissale, A. 2003. Stable isotope geochemistry of Pleistocene travertine from Budakalász (Buda Mts, Hungary). Acta Geologica Hungarica, 46, 161-175.10.1556/AGeol.46.2003.2.4
  22. Keshavarzi, B., Moore, F., Mosaferi, M., Rahmani, F., 2011. The source of natural arsenic contamination in groundwater, west of Iran. Water Quality, Exposure and Health, 3, 135-147. https://doi.org/10.1007/s12403-011-0051-x10.1007/s12403-011-0051-x
  23. Minissale, A., Kerrich, D., Magro, G., 2002. Structural, hydrological, chemical and climatic parameters affecting the precipitation of travertines in the Quaternary along the Tiber valley, north of Rome. Earth and Planetary Science Letters, 203, 709-728.10.1016/S0012-821X(02)00875-0
  24. Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141.10.1016/j.earscirev.2003.09.001
  25. Ozkul, M., Gokgoz, A., Kele, S., Baykara, M.O., Shen, C.C., Chang, Y.W., Kaya, A., Hancer, M., Aratman, C., Akin, T., Oru, Z., 2014. Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology, 61, 291-318. https://doi.org/10.1111/sed.1209510.1111/sed.12095
  26. Ozkul, M., Varol, B., Alçiçek, M., Alçiçek, C., 2002. Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration Journal, 125, 13-29.
  27. Panichi, C. and Tongiorgi, E., 1976. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. Proceedings of the 2nd U.N. Symposium on Development and Use of Geothermal Resources, 1975: San Francisco, 815-825.
  28. Pasvanoglu, S. and Chandrasekharam, D., 2011. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevsehir (Kozakli) area, Central Turkey. Journal of Volcanology and Geothermal Research, 202, 241-250. https://doi.org/10.1016/j.jvolgeores.2011.03.00310.1016/j.jvolgeores.2011.03.003
  29. Pentecost, A., 1995. Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology, 167, 263-278.10.1016/0022-1694(94)02596-4
  30. Pentecost, A., 2005. Travertine. Springer, London, 443 pp.
  31. Pentecost, A. and Viles, H.A, 1994. A review and reassessment of travertine classification. Geographie physique et Quaternaire, 48, 305-314.10.7202/033011ar
  32. Prado-Perez, A.J., Hueras, A.D., Crespo, M.T., Martin Sanchez, A., Perez Del Villar, L., 2013. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the Guadix- Baza basin, Spain. Geological Magazine, 150, 1- 24. https://doi.org/10.1017/S001675681200072610.1017/S0016756812000726
  33. Rahmani Javanmard, S., Tutti, F., Omidian, S., Ranjbaran, M., 2012. Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Central European Geology, 55, 187-212. https://doi.org/10.1556/CEuGeol.55.2012.2.510.1556/CEuGeol.55.2012.2.5
  34. Rainey, D.K. and Jones, B., 2009. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology, 56, 1832-1857. https://doi.org/10.1111/j.1365-3091.2009.01059.x10.1111/j.1365-3091.2009.01059.x
  35. Selim, H.H. and Yanik, G., 2009. Development of the Cambazli (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quaternary International, 199, 57-163. https://doi.org/10.1016/j.quaint.2008.04.00910.1016/j.quaint.2008.04.009
  36. Sierralta, M., Kele, S., Melcher, F., Hambach, U., Reinders, J., Van Geldern, R., Frechen, M., 2010. Uranium series dating of travertine from Sutto: Implications for reconstruction of environmental change in Hungary. Quaternary International, 222, 178-193. https://doi.org/10.1016/j.quaint.2009.04.00410.1016/j.quaint.2009.04.004
  37. Uysal, I.T., Feng, Y., Zhao, J., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S.D., Lawrence, M.G., Collerson, K.D., 2007. U-Series dating and geochemical tracing of late Quaternary travertine in coseismic fissures. Earth and Planetary Science Letters, 257, 450-462. https://doi.org/10.1016/j.epsl.2007.03.00410.1016/j.epsl.2007.03.004
  38. Uysal, T., Feng, Y., Zhao, J., Isik, V., Nuriel, P., Golding, S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chemical Geology, 265, 442-454. https://doi.org/10.1016/j.chemgeo.2009.05.01110.1016/j.chemgeo.2009.05.011
  39. Valero-Garces, B.L., Arenas, C., Delgado-Huertas, A. 2001. Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina. Canadian Journal of Earth Sciences, 38, 1263-1283.10.1139/e01-014
  40. Viles, H.A. and Pentecost, A., 2007. Tufa and travertine. In: Nash, D.J., McLaren, S.J. (Eds.). Geochemical Sediments and Landscapes. Wiley-Blackwell, Oxford, pp. 173-199.10.1002/9780470712917.ch6
  41. Viles, H.A. and Goudie, A.S., 1990. Tufas, travertines and allied carbonate deposits. Progress in Physical Geography, 14, 19-41.10.1177/030913339001400102
  42. Wang, H., Yan, H., Liu, Z., 2014. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 125, 34-48. https://doi.org/10.1016/j.gca.2013.10.00110.1016/j.gca.2013.10.001
  43. Yoshimura, K., Liu, Z., Cao, J., Yuan, D., Inokura, Y., Noto, M., 2004. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology, 205, 141-153. https://doi.org/10.1016/j.chemgeo.2004.01.004.10.1016/j.chemgeo.2004.01.004
DOI: https://doi.org/10.17738/ajes.2018.0005 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 64 - 74
Submitted on: May 15, 2017
Accepted on: Jan 18, 2018
Published on: Sep 6, 2018
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Reihaneh Roshanak, Farid Moore, Alireza Zarasvandi, Behnam Keshavarzi, Reinhard Gratzer, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.