Have a personal or library account? Click to login
Crustal geomagnetic field and secular variation by regional and global models for Austria Cover

Crustal geomagnetic field and secular variation by regional and global models for Austria

Open Access
|Sep 2018

References

  1. Achache, J., Abtout, A., and Le Mouël, J.-L., 1987. The downward continuation of Magsat Crustal Anomaly Field over Southeast Asia. Journal of Geophysical Research, 92, 11584-11596.10.1029/JB092iB11p11584
  2. Alldredge, L.R., 1981. Rectangular Harmonic Analysis applied to the geomagnetic field. Journal of Geophysical Research, 86, 3021-3026.10.1029/JB086iB04p03021
  3. Asgharzadeh, M.F., von Frese, R.R.B., and Kim, H.R., 2008. Spherical prism magnetic effects by Gauss- Legendre quadrature integration. Geophysical Journal International, 173, 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x10.1111/j.1365-246X.2007.03692.x
  4. Backus, G., Constable, C. and Parker, R., 1996. Foundations of Geomagnetism. New York, NY: Cambridge University Press.
  5. Bloxham, J., and Gubbins, D., 1986. Geomagnetic fiels analysis IV - Testing the frozen flux hypothesis. Geophysical Journal of the Royal Astronomical Society, 84, 139-152.10.1111/j.1365-246X.1986.tb04349.x
  6. Chiappini, M., Meloni, A., Boschi, E., Faggioni, O., Beverini, N., Carmisciano, C., Marson, I., 2000. Shaded relief magnetic anomaly map of Italy and surrounding marine areas. Annals of Geophysics, 43/5, 983-989. https://doi.org//10.4401/ag-3676
  7. De Santis, A., Battelli, O., and Kerridge, D.J., 1990. Spherical cap harmonic analysis applied to regional field for Italy. Journal of geomagnetism and geoelectricity, 42, 1019-1036.10.5636/jgg.42.1019
  8. Duka, B., Duka, E. and Peqini, K., 2016. Recovering external contribution from the monthly mean series of a given geomagnetic observatory. Annals of Geophysics, 59/3, G0321. https://doi.org/10.4401/ag-697110.4401/ag-6971
  9. Duka, B., Gaya-Piqué, L. R., De Santis, A., Bushati, S., Chiappini, M. and Dominici, G., 2004. A geomagnetic reference model for Albania, Southern Italy and the Ionian Sea from 1990 to 2005. Annals of Geophysics, 47/5, 1609-1615.
  10. Düzgit, Z. and Malin, S.R.C., 2000. Assessment of regional geomagnetic field modeling methods using a standard data set: spherical cap harmonic analysis. Geophysical Journal International, 141, 829-831.10.1046/j.1365-246x.2000.00099.x
  11. Finlay, C.C., Olsen, N. and Tøffner - Clausen, L., 2015. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth, Planets and Space 67, 114. https://doi.org/10.1186/s40623-015-0274-310.1186/s40623-015-0274-3
  12. Haines. G.V., 1985. Spherical cap harmonic analysis. Journal of Geophysical Research, 90, B3, 2583-2591.10.1029/JB090iB03p02583
  13. Jacobs, J. A. (ed.), 1991. Geomagnetism 4. Academic Press, London, 481 pp.
  14. Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers, Series: Modern Approaches in Geophysics, Boston - Dordrecht-London, 368 pp.10.1007/978-94-015-8613-9
  15. Lowrie, W., 2007. Fundamentals of Geophysics, 2nd edition, Cambridge University Press, Cambridge, UK, 381 pp.
  16. Macmillan, S., and Thomson, A., 2003. An examination of observatory biases during the Magsat and Ørsted missions. Physics of the Earth and Planetary Interiors, 135, 97-105. https://doi.org/10.1016/S0031-9201(02)00209-110.1016/S0031-9201(02)00209-1
  17. Mandea, M. and Langlais, B., 2002. Observatory Crustal Magnetic Biases during MAGSAT and Oersted Satellite Missions. Geophysical Research Letters, 29/15, 8003. https://doi.org/10.1029/2001GL01369310.1029/2001GL013693
  18. Maus, S., 2010. An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720. Geochemistry, Geophysics, Geosystems, 11, Q06015. https://doi.org/10.1029/2010GC003026.10.1029/2010GC003026
  19. Maus, S. and Haak, V., 2002. Is the Long Wavelength Crustal Magnetic Field Dominated by Induced or by Remanent Magnetization? Journal of Indian Geophysical Union, 6/1, 1-5.
  20. Mayhew, M.A., 1979. Inversion of satellite magnetic anomaly data. Journal of Geophysics, 45, 119-128.
  21. Merrill, R. and Mcfadden, P.H., 1999. Geomagnetic polarity transitions. Reviews of Geophysics, 37, 201-226. https://doi.org/10.1029/1998RG90000410.1029/1998RG900004
  22. Nakagawa, I. and Yukutake, T., 1985. Rectangular harmonic analysis of geomagnetic anomalies derived from Magsat data over the area of the Japanese islands. Journal of Geomagnetism and Geoelectricity, 37, 957-77.10.5636/jgg.37.957
  23. Nolte, H. J. and Hahn, A., 1992. A model of the distribution of crustal magnetization in central Europe compatible with the field of magnetic anomalies deduced from Magsat results. Geophysical Journal International, 111, 483-496.10.1111/j.1365-246X.1992.tb02106.x
  24. O’Brien, M.S. and Parker, R.L., 1994. Regularized field modeling using monopoles. Geophysical Journal International, 118, 566-578.10.1111/j.1365-246X.1994.tb03985.x
  25. Olsen, N. and Stolle, C., 2016. Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions - An Overview. Space Science Reviews, 206, 5-25. https://doi.org/10.1007/s11214-016-0279-710.1007/s11214-016-0279-7
  26. Purucker, M.E., 1990. The computation of vector magnetic anomalies: a comparison of techniques and errors. Physics of the Earth and Planetary Interiors, 62, 231-245.10.1016/0031-9201(90)90168-W
  27. Richter, P.H., 1995. Estimating Errors in Least - Squares Fitting. TDA Progress Report, 42-122.
  28. Taylor, P.T. and Ravat, D., 1995. An interpretation of the Magsat anomalies of central Europe. Journal of Applied Geophysics, 34, 83-91. https://doi.org/10.1016/0926-9851(95)00015-110.1016/0926-9851(95)00015-1
  29. Voigt, G-H., 1981. A mathematical Magnetospheric Field Model with independent physical parameters. Planetary and Space Science, 29, 1-20.10.1016/0032-0633(81)90134-3
  30. Wardinski, I. and Holme, R., 2011. Signal from noise in geomagnetic field modeling: de noising data for secular variation studies. Geophysical Journal International, 185, 653-662. https://doi.org/10.1111/j.1365-246X.2011.04988.x.10.1111/j.1365-246X.2011.04988.x
DOI: https://doi.org/10.17738/ajes.2018.0004 | Journal eISSN: 2072-7151 | Journal ISSN: 0251-7493
Language: English
Page range: 48 - 63
Submitted on: May 31, 2017
Accepted on: Jan 2, 2018
Published on: Sep 6, 2018
Published by: Austrian Geological Society
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Klaudio Peqini, Bejo Duka, Ramon Egli, Barbara Leichter, published by Austrian Geological Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.