Have a personal or library account? Click to login
The influence of ground heat exchanger installation on the efficiency of residential geothermal ventilation systems Cover

The influence of ground heat exchanger installation on the efficiency of residential geothermal ventilation systems

Open Access
|Dec 2025

References

  1. Abbiasov, T., Bischi, A., Gangi, M., Baccioli, A., Santi, P. & Ratti, C. (2025) Leveraging seawater thermal energy storage and heat pumps for coupling electricity and urban heating: A techno-economic analysis. Energies, 18(7), 1869. DOI: 10.3390/en18071869.
  2. Galantino, C.R., Beyers, S., Anderson, C.L. & Tester, J.W. (2021) Optimizing Cornell’s future geothermal district heating performance through systems engineering and simulation. Energy and Buildings, 230, 110529. DOI: 10.1016/j.enbuild.2020.110529.
  3. Gorás, M., Domanický, J., Káposztásová, D., Vranay, F. & Vranayová, Z. (2024) Innovative approaches to bridging energy supply and demand gaps through thermal energy storage: A case study. Energies, 17, 6197. DOI: 10.3390/en17236197.
  4. Guz, Ł., Gaweł, D., Łagód, S., Guz, E. & Pawlik, Z. (2024) Analysis of fluid velocity in borehole ground heat exchangers connected in the Tichelmann system. AIP Conference Proceedings, 3126, 020009. DOI: 10.1063/5.0200789
  5. Hagedorn, J., Kahlfeld, R., Nageler, M. & Kabelac, S. (2024) Investigation of the operating characteristic of a demand-controlled 368 m deep CO2 thermosyphon geothermal borehole heat exchanger for building heating. Journal of Physics: Conference Series, 2766(1), 012106. DOI: 10.1088/1742-6596/2766/1/012106.
  6. Kljajić, M.V., Anđelković, A.S., Hasik, V., Munćan, V.M. & Bilec, M. (2020) Shallow geothermal energy integration in district heating system: An example from Serbia. Renewable Energy, 147(2), 2791–2800. DOI: 10.1016/j.renene.2018.11.103.
  7. Liu, Z., Xie, M., Zhou, Y., He, Y., Zhang, L., Zhang, G. & Chen, D. (2023) A state-of-the-art review on shallow geothermal ventilation systems with thermal performance enhancement – system classifications, advanced technologies and applications. Energy and Built Environment, 4(2), 148–168. DOI: 10.1016/j.enbenv.2021.10.003.
  8. Nagy, R., Mečiarová, Ľ., Vilčeková, S., Krídlová Burdová, E. & Košičanová, D. (2019) Investigation of a ventilation system for energy efficiency and indoor environmental quality in a renovated historical building: A case study. International Journal of Environmental Research and Public Health, 16(21), 4133. DOI: 10.3390/ijerph16214133.
  9. Nedbaylo, O.M., Bozhko, I.K., Tkachenko, M.V. & Andreychuk, S.V. (2020) Numerical modeling of parameters of air-ground heat exchangers for geothermal ventilation. Ventilation, lighting and heat and gas supply, 35, 41–48. DOI: 10.32347/2409-2606.2020.35.41-48 (in Ukrainian).
  10. Piotrowska-Woroniak J. (2020) Preliminary results of the temperature distribution measurements around the vertical ground heat exchangers tubes. Ecological Chemistry and Engineering, 27(4), 509–528. DOI: 10.2478/eces-2020-0031.
  11. Rudakov, D. & Inkin, O. (2021) Validation of the operation efficiency criteria for geothermal probes in flooded mine workings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105. DOI: 10.33271/nvngu/2021-5/100.
  12. Savchenko, O. & Lis, A. (2023) Estimation of efficiency of use of flat solar collectors in temperate climate regions. Lecture Notes in Civil Engineering, 290, 355–364. DOI: 10.1007/978-3-031-14141-6_36.
  13. Savchenko, O., Yurkevych, Y., Zhelykh, V. & Voznyak O. (2023) Review of schemes of geothermal district heating and recommendations for their use in Lviv region. Lecture Notes in Civil Engineering, 290, 344–354. DOI: 10.1007/978-3-031-14141-6_35.
  14. Savchenko, O., Zhelykh, V., Dudnik, K. & Kononchuk, O. (2015) Technical prerequisites for installing geothermal ventilation in passive house. Theory and Practice of Construction, 823, 281–285, https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/4233/4481.pdf (in Ukrainian).
  15. Savchenko O., Zhelykh V., Yurkevych Yu., Kozak K. & Bahmet, S. (2018) Alternative energy source for heating system of woodworking enterprise, Energy Engineering and Control Systems, 4(1), 27–30. DOI: 10.23939/jeecs2018.01.027.
  16. Sun, F., Hao, B., Fu, L., Wu, H., Xie, Y. & Wu, H. (2021) New medium-low temperature hydrothermal geothermal district heating system based on distributed electric compression heat pumps and a centralized absorption heat transformer. Energy, 232, 120974. DOI: 10.1016/j.energy.2021.120974.
  17. Timilsina, N.S., Adhikari, N., Gautam, S., Aacharya, A., Satyal, S., Pandey, P. & Baral, B. (2023) Comparative analysis of biomass boiler, heat pump, directelectric and solar-biomass based heating systems for small residential building in Kathmandu. IOP Conference Series: Materials Science and Engineering, 1314(1), 012012. DOI: 10.1088/1757-899X/1314/1/012012.
  18. Ujma, A., Iremashvili, I., Mskhiladze, N., Jarosz, P. & Tsadzikidze, A. (2025) Greening of structures as one of the attributes of green building certification. The Collected papers of the XII International Scientific and Technical Conference Modern problems of water management, environmental protection, architecture and construction, 14–16 July, 2025, Tbilisi, Georgia, 180–190.
  19. Wang, C., Wang, Q., Nourozi, B., Pieskä, H. & Ploskić A. (2021) Evaluating the cooling potential of a geothermal-assisted ventilation system for multi-family dwellings in the Scandinavian climate. Building and Environment, 204, 108114. DOI: 10.1016/j.buildenv.2021.108114.
  20. Wang, L., Xu, C., Wang, C., Zhang, L., Xu, H. & Zheng, J. (2025) Prospects and challenges of seawater source heat pump utilization in China: A systematic review. Renewable and Sustainable Energy Reviews, 210, 115247. DOI: 10.1016/j.rser.2024.115247.
  21. Zeng, S., Yan, Z. & Yang, J. (2021) Review and forecast of ground heat exchangers development: A bibliometric analysis from 2001 to 2020. Sustainable Energy Technologies and Assessments, 47, 101547. DOI: 10.1016/j.seta.2021.101547.
  22. Zhelykh, V., Savchenko, O. & Matusevych, V. (2016) Improving efficiency of heat exchange of horizontal ground-air heat exchanger for geothermal ventilation systems. Fizyka Budowli w Teorii i Praktyce, 8(4), 43–46.
  23. Ziemele, J., Volkova, A., Latõšov, E., Murauskaitė, L. & Džiuvė, V. (2023) Comparative assessment of heat recovery from treated wastewater in the district heating systems of the three capitals of the Baltic countries. Energy, 280, 128132. DOI: 10.1016/j.energy.2023.128132.
  24. Zirne, M.A. & Pakere, I. (2024) Integrating low-temperature waste heat in district heating systems. Legal framework and pricing. Environmental and Climate Technologies, 28(1), 880–894. DOI: 10.2478/rtuect-2024-0067.
DOI: https://doi.org/10.17512/bozpe.2025.14.18 | Journal eISSN: 2544-963X | Journal ISSN: 2299-8535
Language: English
Page range: 179 - 187
Published on: Dec 12, 2025
Published by: Technical University in Czestochowa
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Vadym Matusevych, Olena Savchenko, Orest Vozniak, Anna Lis, published by Technical University in Czestochowa
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.