Have a personal or library account? Click to login
The influence of the type and grain size of glass waste on the physical and mechanical properties of cement mortars Cover

The influence of the type and grain size of glass waste on the physical and mechanical properties of cement mortars

By: Jakub Jura and  Roza Shainova  
Open Access
|Dec 2025

References

  1. Agrela, F., Cabrera, M., Morales, M.M., Zamorano, M. & Alshaaer, M. (2019) Biomass fly ash and biomass bottom ash. In: de Brito, J. & Agrela, F. (eds.), New Trends in Eco-Efficient and Recycled Concrete, Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, 23–58. DOI: 10.1016/B978-0-08-102480-5.00002-6.
  2. Ahmad, J., Martinez-Garcia, R., Algarni, S., de-Prado-Gil, J., Alqahtani, T. & Irshad, K. (2022) Characteristics of sustainable concrete with partial substitutions of glass waste as a binder material. International Journal of Concrete Structures and Materials, 16, 21. DOI: 10.1186/s40069-022-00511-1.
  3. Ankur, N. & Singh, N. (2021) Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renewable and Sustainable Energy Reviews, 149, 111361. DOI: 10.1016/j.rser.2021.111361.
  4. Bonfim, W.B. & de Paula, H.M. (2021) Characterization of different biomass ashes as supplementary cementitious material to produce coating mortar. Journal of Cleaner Production, 291, 125869. DOI: 10.1016/j.jclepro.2021.125869.
  5. Cai, P., Mao, X., Lai, X. & Wu, Q. (2025) Influence mechanism of brick-concrete ratio on the mechanical properties and water permeability of recycled aggregate pervious concrete: Macroscopic and mesoscopic insights. Construction and Building Materials, 467, 140379. DOI: 10.1016/j.conbuildmat.2025.140379.
  6. Chen, W., Dong, S., Liu, Y., Liang, Y. & Skoczylas, F. (2022) Effect of waste glass as fine aggregate on properties of mortar. Materials, 15, 8499. DOI: 10.3390/ma15238499.
  7. Czapik, P. (2020) Microstructure and degradation of mortar containing waste glass aggregate as evaluated by various microscopic techniques. Materials, 13, 2186. DOI: 10.3390/ma13092186.
  8. Fořt, J., Šál, J., Keppert, M., Mildner, M., Hotěk, P., Ślosarczyk, A., Klapiszewski, Ł. & Černý, R. (2024) Durability analysis of sustainable mortars with biomass fly ash as high-volume replacement of Portland cement. Journal of Building Engineering, 91, 109565. DOI: 10.1016/j.jobe.2024.109565.
  9. Han, X., Wang, L., Chen, A., Feng, L., Ji, Y., Wang, Z., Gao, Z., Li, K., Yuan, Q., Xia, X. & Zhang, Q. (2025) Experimental and analytical evaluation of mechanical properties of rubberized concrete incorporating waste tire crumb rubber. Case Studies in Construction Materials, 23, e04970. DOI: 10.1016/j.cscm.2025.e04970.
  10. Harrison, E., Berenjian, A. & Seifan, M. (2020) Recycling of waste glass as aggregate in cement-based materials. Environmental Science and Ecotechnology, 4, 100064. DOI: 10.1016/j.ese.2020.100064.
  11. Islam, G.M.S., Rahman, M.H. & Kazi, N. (2017) Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6, 37–44. DOI: 10.1016/j.ijsbe.2016.10.005.
  12. Jura, J. & Ulewicz, M. (2025) The use of bottom and a mixture of bottom and fly ash from wood-sunflower biomass combustion in concrete production. Archives of Civil Engineering, 71, 19–35. DOI: 10.24425/ace.2025.154105.
  13. Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14, 6708. DOI: 10.3390/ma14216708.
  14. Jura, J. & Ulewicz, M. (2017) The impact of bio-ash on the selected properties of cement mortars. Scientific Review Engineering and Environmental Sciences, 26, 234–240. DOI: 10.22630/PNIKS.2017.26.2.22.
  15. Kasaniya, M., Thomas, M.D.A. & Moffatt, E.G. (2021) Pozzolanic reactivity of natural pozzolans, ground glasses and coal bottom ashes and implication of their incorporation on the chloride permeability of concrete. Cement and Concrete Research, 139, 106259. DOI: 10.1016/j.cemconres.2020.106259.
  16. Langier, B. (2022) Badanie wybranych właściwości betonu z popiołem lotnym ze współspalania biomasy drzewnej i węgla kamiennego. Materiały Budowlane 1, 135–139. DOI: 10.15199/33.2022.12.34.
  17. Małek, M., Łasica, W., Jackowski, M. & Kadela, M. (2020) Effect of waste glass addition as a replacement for fine aggregate on properties of mortar. Materials, 13, 3189. DOI: 10.3390/ma13143189.
  18. Modi, R. & Bhogayata, A. (2023) Utilization of recycled concrete residues as secondary materials in the development of sustainable concrete composite. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.03.664.
  19. Murtaza, M., Zhang, J., Yang, C., Su, C. & Wu, H. (2024) Durability of high strength self-compacting concrete with fly ash, coal gangue powder, cement kiln dust, and recycled concrete powder. Construction and Building Materials, 449, 138345. DOI: 10.1016/j.conbuildmat.2024.138345.
  20. Nassar, R.-U.-D. & Soroushian, P. (2012) Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. DOI: 10.1016/j.conbuildmat.2011.10.061.
  21. Pietrzak, A. (2024) Effect of polypropylene fiber structure and length on selected properties of concrete. Construction of Optimized Energy Potential, 13, 78–88. DOI: 10.17512/bozpe.2024.13.09.
  22. Pietrzak, A. & Ulewicz, M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16, 2231. DOI: 10.3390/ma16062231.
  23. Pietrzak, A., Ulewicz, M., Kozień, E. & Pietraszek, J. (2025) Application of a mixture of fly ash and solid waste from gas treatment from municipal solid waste incineration in cement mortar. Materials, 18, 481. DOI: 10.3390/ma18030481.
  24. PN-B 04500 0:1985 – Zaprawy budowlane. Badania cech fizycznych i wytrzymałościowych.
  25. PN-EN 196-1:2016-07 – Metody badania cementu – Część 1: Oznaczanie wytrzymałości.
  26. PN-EN 1015-3 – Metody badań zapraw do murów – Określenie konsystencji świeżej zaprawy (za pomocą stolika rozpływu).
  27. PN-EN 1015-11:2020-04 – Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy.
  28. PN-EN 1015-18 – Metody badań zapraw do murów – Część 18: Określenie współczynnika absorpcji wody spowodowanej podciąganiem kapilarnym stwardniałej zaprawy.
  29. Pormmoon, P., Khongpermgoson Sanit-in, P., Jaturapitakkul, C., Ban, C.C. & Tangchirapat, W. (2024) Strength, durability, and heat development characteristics of high-performance concrete containing ground coal bottom ash with low and high calcium. Case Studies in Construction Materials, 21, e03845. DOI: 10.1016/j.cscm.2024.e03845.
  30. Recycling in Poland: Can the Country Meet the EU’s 70% Glass Collection Target? Poland Insight, 2025. URL https://polandinsight.com/recycling-in-poland-can-the-country-meet-the-eus-70-glass-collection-target-89870/ (accessed 9.03.2025).
  31. Rutkowska, G. & Małuszyńska, I. (2014) Research of properties of concrete with the use of fly ash. Inżynieria Ekologiczna, 36. DOI: 10.12912/2081139X.05.
  32. Sobuz, H.R., Khan, M.H., Islam, R., Kabbo, K.I., Alzlfawi, A., Jameel, M. & Khan, M.H. (2025) Combined influence of crushed brick powder and recycled concrete aggregate on the mechanical, durability and microstructural properties of eco-concrete: An experimental and machine learning-based evaluation. Journal of Materials Research and Technology, 36, 8757–8776. DOI: 10.1016/j.jmrt.2025.05.118.
  33. Son, M., Kim, G., Lee, S., Kim, H., Eu, H., Lee, Y., Sasui, S. & Nam, J. (2024) Investigation of conditions for using mass-produced waste glass as sustainable fine aggregate for mortar. International Journal of Concrete Structures and Materials, 18, 55. DOI: 10.1186/s40069-024-00697-6.
  34. Tanash, A.O., Muthusamy, K., Mat Yahaya, F. & Ismail, M.A. (2023) Potential of recycled powder from clay Brick, sanitary Ware, and concrete waste as a cement substitute for concrete: An overview. Construction and Building Materials, 401, 132760. DOI: 10.1016/j.conbuildmat.2023.132760.
  35. Ulewicz, M., Jura, J. & Gnatowski, A. (2024a) Cement mortars based on polyamide waste modified with fly ash from biomass combustion – A new material for sustainable construction. Sustainability, 16, 3079. DOI: 10.3390/su16073079.
  36. Ulewicz, M., Jura, J., Zieliński, A. & Pietraszek, J. (2024b) The application of converter sludge and slag to produce ecological cement mortars. Materials, 17. DOI: 10.3390/ma17174295.
  37. Voshell, S., Mäkelä, M. & Dahl, O. (2018) A review of biomass ash properties towards treatment and recycling. Renewable and Sustainable Energy Reviews, 96, 479–486. DOI: 10.1016/j.rser.2018.07.025.
  38. Zhao, Y., Guo, Y., Sun, Y., Zhou, X., Min, Z., Lin, Q., Chen, S., Li, Y., Jiang, M., Feng, A. & Kang, S. (2025) Mechanical and microstructural properties of glass powder-modified recycled brick-concrete aggregate concrete. Case Studies in Construction Materials, 22, e04720. DOI: 10.1016/j.cscm.2025.e04720.
DOI: https://doi.org/10.17512/bozpe.2025.14.13 | Journal eISSN: 2544-963X | Journal ISSN: 2299-8535
Language: English
Page range: 124 - 135
Published on: Dec 12, 2025
Published by: Technical University in Czestochowa
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Jakub Jura, Roza Shainova, published by Technical University in Czestochowa
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.