References
- Agrela, F., Cabrera, M., Morales, M.M., Zamorano, M. & Alshaaer, M. (2019) Biomass fly ash and biomass bottom ash. In: de Brito, J. & Agrela, F. (eds.), New Trends in Eco-Efficient and Recycled Concrete, Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, 23–58. DOI: 10.1016/B978-0-08-102480-5.00002-6.
- Ahmad, J., Martinez-Garcia, R., Algarni, S., de-Prado-Gil, J., Alqahtani, T. & Irshad, K. (2022) Characteristics of sustainable concrete with partial substitutions of glass waste as a binder material. International Journal of Concrete Structures and Materials, 16, 21. DOI: 10.1186/s40069-022-00511-1.
- Ankur, N. & Singh, N. (2021) Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renewable and Sustainable Energy Reviews, 149, 111361. DOI: 10.1016/j.rser.2021.111361.
- Bonfim, W.B. & de Paula, H.M. (2021) Characterization of different biomass ashes as supplementary cementitious material to produce coating mortar. Journal of Cleaner Production, 291, 125869. DOI: 10.1016/j.jclepro.2021.125869.
- Cai, P., Mao, X., Lai, X. & Wu, Q. (2025) Influence mechanism of brick-concrete ratio on the mechanical properties and water permeability of recycled aggregate pervious concrete: Macroscopic and mesoscopic insights. Construction and Building Materials, 467, 140379. DOI: 10.1016/j.conbuildmat.2025.140379.
- Chen, W., Dong, S., Liu, Y., Liang, Y. & Skoczylas, F. (2022) Effect of waste glass as fine aggregate on properties of mortar. Materials, 15, 8499. DOI: 10.3390/ma15238499.
- Czapik, P. (2020) Microstructure and degradation of mortar containing waste glass aggregate as evaluated by various microscopic techniques. Materials, 13, 2186. DOI: 10.3390/ma13092186.
- Fořt, J., Šál, J., Keppert, M., Mildner, M., Hotěk, P., Ślosarczyk, A., Klapiszewski, Ł. & Černý, R. (2024) Durability analysis of sustainable mortars with biomass fly ash as high-volume replacement of Portland cement. Journal of Building Engineering, 91, 109565. DOI: 10.1016/j.jobe.2024.109565.
- Han, X., Wang, L., Chen, A., Feng, L., Ji, Y., Wang, Z., Gao, Z., Li, K., Yuan, Q., Xia, X. & Zhang, Q. (2025) Experimental and analytical evaluation of mechanical properties of rubberized concrete incorporating waste tire crumb rubber. Case Studies in Construction Materials, 23, e04970. DOI: 10.1016/j.cscm.2025.e04970.
- Harrison, E., Berenjian, A. & Seifan, M. (2020) Recycling of waste glass as aggregate in cement-based materials. Environmental Science and Ecotechnology, 4, 100064. DOI: 10.1016/j.ese.2020.100064.
- Islam, G.M.S., Rahman, M.H. & Kazi, N. (2017) Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6, 37–44. DOI: 10.1016/j.ijsbe.2016.10.005.
- Jura, J. & Ulewicz, M. (2025) The use of bottom and a mixture of bottom and fly ash from wood-sunflower biomass combustion in concrete production. Archives of Civil Engineering, 71, 19–35. DOI: 10.24425/ace.2025.154105.
- Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14, 6708. DOI: 10.3390/ma14216708.
- Jura, J. & Ulewicz, M. (2017) The impact of bio-ash on the selected properties of cement mortars. Scientific Review Engineering and Environmental Sciences, 26, 234–240. DOI: 10.22630/PNIKS.2017.26.2.22.
- Kasaniya, M., Thomas, M.D.A. & Moffatt, E.G. (2021) Pozzolanic reactivity of natural pozzolans, ground glasses and coal bottom ashes and implication of their incorporation on the chloride permeability of concrete. Cement and Concrete Research, 139, 106259. DOI: 10.1016/j.cemconres.2020.106259.
- Langier, B. (2022) Badanie wybranych właściwości betonu z popiołem lotnym ze współspalania biomasy drzewnej i węgla kamiennego. Materiały Budowlane 1, 135–139. DOI: 10.15199/33.2022.12.34.
- Małek, M., Łasica, W., Jackowski, M. & Kadela, M. (2020) Effect of waste glass addition as a replacement for fine aggregate on properties of mortar. Materials, 13, 3189. DOI: 10.3390/ma13143189.
- Modi, R. & Bhogayata, A. (2023) Utilization of recycled concrete residues as secondary materials in the development of sustainable concrete composite. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2023.03.664.
- Murtaza, M., Zhang, J., Yang, C., Su, C. & Wu, H. (2024) Durability of high strength self-compacting concrete with fly ash, coal gangue powder, cement kiln dust, and recycled concrete powder. Construction and Building Materials, 449, 138345. DOI: 10.1016/j.conbuildmat.2024.138345.
- Nassar, R.-U.-D. & Soroushian, P. (2012) Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. DOI: 10.1016/j.conbuildmat.2011.10.061.
- Pietrzak, A. (2024) Effect of polypropylene fiber structure and length on selected properties of concrete. Construction of Optimized Energy Potential, 13, 78–88. DOI: 10.17512/bozpe.2024.13.09.
- Pietrzak, A. & Ulewicz, M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16, 2231. DOI: 10.3390/ma16062231.
- Pietrzak, A., Ulewicz, M., Kozień, E. & Pietraszek, J. (2025) Application of a mixture of fly ash and solid waste from gas treatment from municipal solid waste incineration in cement mortar. Materials, 18, 481. DOI: 10.3390/ma18030481.
- PN-B 04500 0:1985 – Zaprawy budowlane. Badania cech fizycznych i wytrzymałościowych.
- PN-EN 196-1:2016-07 – Metody badania cementu – Część 1: Oznaczanie wytrzymałości.
- PN-EN 1015-3 – Metody badań zapraw do murów – Określenie konsystencji świeżej zaprawy (za pomocą stolika rozpływu).
- PN-EN 1015-11:2020-04 – Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy.
- PN-EN 1015-18 – Metody badań zapraw do murów – Część 18: Określenie współczynnika absorpcji wody spowodowanej podciąganiem kapilarnym stwardniałej zaprawy.
- Pormmoon, P., Khongpermgoson Sanit-in, P., Jaturapitakkul, C., Ban, C.C. & Tangchirapat, W. (2024) Strength, durability, and heat development characteristics of high-performance concrete containing ground coal bottom ash with low and high calcium. Case Studies in Construction Materials, 21, e03845. DOI: 10.1016/j.cscm.2024.e03845.
- Recycling in Poland: Can the Country Meet the EU’s 70% Glass Collection Target? Poland Insight, 2025. URL
https://polandinsight.com/recycling-in-poland-can-the-country-meet-the-eus-70-glass-collection-target-89870/ (accessed 9.03.2025). - Rutkowska, G. & Małuszyńska, I. (2014) Research of properties of concrete with the use of fly ash. Inżynieria Ekologiczna, 36. DOI: 10.12912/2081139X.05.
- Sobuz, H.R., Khan, M.H., Islam, R., Kabbo, K.I., Alzlfawi, A., Jameel, M. & Khan, M.H. (2025) Combined influence of crushed brick powder and recycled concrete aggregate on the mechanical, durability and microstructural properties of eco-concrete: An experimental and machine learning-based evaluation. Journal of Materials Research and Technology, 36, 8757–8776. DOI: 10.1016/j.jmrt.2025.05.118.
- Son, M., Kim, G., Lee, S., Kim, H., Eu, H., Lee, Y., Sasui, S. & Nam, J. (2024) Investigation of conditions for using mass-produced waste glass as sustainable fine aggregate for mortar. International Journal of Concrete Structures and Materials, 18, 55. DOI: 10.1186/s40069-024-00697-6.
- Tanash, A.O., Muthusamy, K., Mat Yahaya, F. & Ismail, M.A. (2023) Potential of recycled powder from clay Brick, sanitary Ware, and concrete waste as a cement substitute for concrete: An overview. Construction and Building Materials, 401, 132760. DOI: 10.1016/j.conbuildmat.2023.132760.
- Ulewicz, M., Jura, J. & Gnatowski, A. (2024a) Cement mortars based on polyamide waste modified with fly ash from biomass combustion – A new material for sustainable construction. Sustainability, 16, 3079. DOI: 10.3390/su16073079.
- Ulewicz, M., Jura, J., Zieliński, A. & Pietraszek, J. (2024b) The application of converter sludge and slag to produce ecological cement mortars. Materials, 17. DOI: 10.3390/ma17174295.
- Voshell, S., Mäkelä, M. & Dahl, O. (2018) A review of biomass ash properties towards treatment and recycling. Renewable and Sustainable Energy Reviews, 96, 479–486. DOI: 10.1016/j.rser.2018.07.025.
- Zhao, Y., Guo, Y., Sun, Y., Zhou, X., Min, Z., Lin, Q., Chen, S., Li, Y., Jiang, M., Feng, A. & Kang, S. (2025) Mechanical and microstructural properties of glass powder-modified recycled brick-concrete aggregate concrete. Case Studies in Construction Materials, 22, e04720. DOI: 10.1016/j.cscm.2025.e04720.