Have a personal or library account? Click to login
Analysis of the use of fiber concrete in lintel beams as an alternative to traditional prefabricated solutions Cover

Analysis of the use of fiber concrete in lintel beams as an alternative to traditional prefabricated solutions

Open Access
|Nov 2025

References

  1. Blazy, J., Drobiec, Ł. & Blazy, R. (2022) The use of glass fibre reinforced concrete to create structural elements and architectural forms (in polish). Przegląd Budowlany, 93, 5-6, 27–33.
  2. Czajkowska, A., Raczkiewicz, W. & Ingaldi, M. (2023) Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives, 29(3), 288–297. DOI: 10.30657/pea.2023.29.33.
  3. Ding, Y. & Kusterle, W. (2000) Compressive stress-strain relationship of steel fibre-reinforced concrete at early age. Cement and Concrete Research, 30, 1573–1579.
  4. Dobashi, H., Matsuda, M., Kondo, Y. & Fujii, A. (2007) Development of Steel Fiber Reinforced Highly Flowable Concrete Segments and Application to Construction. Society for Mining, Metallurgy & Exploration.
  5. Glinicki, M.A. (2008) Equivalent flexural strength of fiber-reinforced concrete (In Polish). Inżynier Budownictwa, 1.
  6. Helbrych, P. (2021) Effect of dosing with propylene fibers on the mechanical properties of concretes. Construction of Optimized Energy Potential (CoOEP), 10(2), 39–44. DOI: 10.17512/bozpe.2021.2.05.
  7. Hoła, J., Pietraszek, P. & Schabowicz, K. (2010) Structural Design of Traditionally Constructed Buildings (In Polish). Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.
  8. Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14, 6708.
  9. Kobaka, J. & Katzer, J. (2022) A principal component analysis in concrete design. Construction of Optimized Energy Potential (CoOEP), 11, 203–214. DOI: 10.17512/bozpe.2022.11.23.
  10. Kysiak, A. & Szuba, B. (2023) Modular houses as a form of sustainable construction. Construction of Optimized Energy Potential (CoOEP), 12, 182–190. DOI: 10.17512/bozpe.2023.12.20.
  11. Latifi, M.R., Biricik, Ö. & Mardani Aghabaglou, A. (2021) Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345–369. DOI: 10.1080/01694243.2021.1922221.
  12. Ma, M., Tam, V.W., Le, K.N. & Osei-Kuei, R. (2022) Factors affecting the price of recycled concrete: A critical review. Journal of Building Engineering, 46, 103743.
  13. Pietrzak, A. (2024) Effect of polypropylene fiber structure and length on selected properties of concrete. Construction of Optimized Energy Potential (CoOEP), 13, 78–88. DOI: 10.17512/bozpe.2024.13.09.
  14. Pietrzak, A. & Ulewicz M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16(6), 2231. DOI: 10.3390/ma16062231.
  15. Purcell, A., Forde, M.M., Maharaj, R. & Maharaj, C. (2021) Optimising the performance of crumb rubber modified concrete. Journal of Solid Waste Technology and Management, 47(1), 137–145.
  16. Respondek, Z. (2017) Construction-fitting process organization and management in a small business. Production Engineering Archives, 14(14), 40–44. DOI: 10.30657/pea.2017.14.10.
  17. Selejdak, J., Bobalo, T., Blikharskyy, Y. & Dankevych, I. (2023) Mathematical modelling of stress-strain state of steel-concrete beams with combined reinforcement. Production Engineering Archives, 29(1), 108–115. DOI: 10.30657/pea.2023.29.13.
  18. Stefanidou, M., Kamperidou, V., Konstandinidis, A., Koltsou, P. & Papadopoulos, S. (2022) Rheological properties of biofibers in cementitious composite matrix. In Advances in Bio-Based Fiber, Moving Towards a Green Society. The Textile Institute Book Series. DOI: 10.1016/B978-0-12-824543-9.00017-7.
  19. Sukontasukkul, P., Pomchiengpin, W. & Songpiriyakij, S. (2010) Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Construction and Building Materials, 24, 1967–1974.
  20. Teng, T.-L., Chu, Y.-A., Chang, F.-A., Shen, B.-C. & Cheng D.-S. (2008) Development and validation of numerical model of steel fiber reinforced concrete for high-velocity impact. Computational Materials Science, 42, 90–99.
  21. Ulewicz, M. & Halbiniak, J. (2016) Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochemical Problems of Mineral Processing, 52, 1002–1010.
  22. Ulewicz, M. & Pietrzak, A. (2021) Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials, 14, 872.
  23. Ulewicz, M. & Pietrzak, A. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16, 2231.
  24. Uygunoǧlu, T. (2008) Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete. Materials and Structures, 41, 1441–1449.
  25. Vighio, A.A., Zakaria, R., Ahmad, F., Munikanan, V., Wahi, N., Aminuddin, E., Jia Wen, T., Mohd Saha, K., Umran, N.I.L. & Pawłowicz, J.A. (2024) Overall thermal transfer analysis of glazing facade design for passive building energy efficiency. Civil and Environmental Engineering Reports, 34(4), 503–520. DOI: 10.59440/ceer/193131.
  26. Wang, Z.-L., Liu, Y.-S. & Shen, R.F. (2008) Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression. Construction and Building Materials, 22, 811–819.
  27. Wang Z.-L., Wu L.P. & Wang J.G. (2010) A study of constitutive relation and dynamic failure for SFRC in compression. Construction and Building Materials, 24, 1358–1363.
  28. Yazici S., Inan G. & Tabak V. (2007) Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250–1253.
  29. Zhang, Y., Mao, Y., Jiao, L. Shuai, C. & Zhang, H. (2021) Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environmental Impact Assessment Review, 89, 106580.
DOI: https://doi.org/10.17512/bozpe.2025.14.03 | Journal eISSN: 2544-963X | Journal ISSN: 2299-8535
Language: English
Published on: Nov 24, 2025
Published by: Technical University in Czestochowa
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Szymon Sawczyński, Anees Ahmed Vighio, Muhammad Yousaf Raza Taseer, published by Technical University in Czestochowa
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

AHEAD OF PRINT