Have a personal or library account? Click to login
Testing the parameters of hot-mix asphalt incorporating asphalt granulate Cover

Testing the parameters of hot-mix asphalt incorporating asphalt granulate

Open Access
|Jun 2024

References

  1. Abdel-Jaber, M., Al-shamayleh, R., Ibrahim, R., Alkhrissat, T. & Alqatamin, A. (2022) Mechanical properties evaluation of asphalt mixtures with variable contents of reclaimed asphalt pavement (RAP). Results in Engineering, 14, 100463.
  2. Act of 14 December 2012 on waste. OJ 2013, item 21.
  3. Andrew, B., Buyondo, K.A., Kasedde, H., Kirabira J.B., Olupot, P.W. & Yusuf, A.A. (2022) Investigation on the use of reclaimed asphalt pavement along with steel fibers in concrete. Case Studies in Construction Materials, 17, e01356.
  4. Ansari, A.H., Jakarni, F.M., Muniandy, R., Hassim, S., Elahi, Z. & Ben Zair, M.M. (2023) Mechanical performance of cup lump rubber modified asphalt mixtures incorporating polyphosphoric acid. Construction and Building Materials, 392, 131939.
  5. Buss, A., Cascione, A. & Williams, R.C. (2014) Evaluation of warm mix asphalt containing recycled asphalt shingles. Construction and Building Materials, 61, 1-9.
  6. Dębska, B., Krasoń, J. & Lichołaj, L. (2021) The evaluation of the possible utilization of waste glass in sustainable mortars. Construction of Optimized Energy Potential, 9(2), 7-15.
  7. Harwat, A. & Respondek, Z. (2023) Assessment of the application of lumpy steel slag as an aggregate replacement in concrete. In: Ulewicz, R., Radek, N. & Pietraszek, J. (Eds.) Quality Production Improvement and System Safety. QPI 16 – CZOTO 10, Materials Research Proceedings 34, 139-144.
  8. Helbrych, P. (2021) Effect of dosing with propylene fibers on the mechanical properties of concretes. Construction of Optimized Energy Potential, 10(2), 39-44.
  9. Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14(21), 6708.
  10. Karthikeyan, K., Kothandaraman, S. & Sarang, G. (2023) Perspectives on the utilization of reclaimed asphalt pavement in concrete pavement construction: A critical review. Case Studies in Construction Materials, 19, e02242.
  11. Kukiełka, J. (2013) Nawierzchnie asfaltowe dróg samorządowych. Politechnika Lubelska, Lublin.
  12. Lis, T. & Nowacki, K. (2022) Pro-ecological possibilities of using metallurgical waste in the production of aggregates. Production Engineering Archives, 28(3), 252-256.
  13. Ołdakowska, E. & Ołdakowski, J. (2021) Financial aspect of using the asphalt granulate in mixtures designed for road substructures. Ekonomia i Środowisko, 2(77), 81-94.
  14. Pietrzak, A. & Ulewicz, M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials, 16(6), 2231.
  15. PN-EN 12697-5 – Mieszanki mineralno-asfaltowe -- Metody badania mieszanek mineralno-asfaltowych na gorąco -- Część 5: Oznaczanie gęstości.
  16. PN-EN 12697-6 – Mieszanki mineralno-asfaltowe -- Metody badania mieszanek mineralno-asfaltowych na gorąco -- Część 6: Oznaczanie gęstości objętościowej próbek mieszanki mineralno-asfaltowej.
  17. PN-EN 12697-22 – Mieszanki mineralno-asfaltowe -- Metody badania mieszanek mineralno-asfaltowych na gorąco -- Część 22: Koleinowanie.
  18. PN-EN 12697-12 – Mieszanki mineralno-asfaltowe -- Metody badania mieszanek mineralno-asfaltowych na gorąco -- Część 12: Określanie wrażliwości próbek asfaltowych na wodę.
  19. Regulation of the Minister of Climate and Environment of 23 December 2021 on determining the detailed conditions for losing the waste status for reclaimed asphalt pavement. OJ 2021, item 2468.
  20. Remixing przyszłością remontów dróg. Available online: https://edroga.pl/drogi-i-mosty/remixingprzyszloscia-remontow-drog-21052134 (accessed on 10 October 2023).
  21. RID 9.2.1 Wytyczne pozyskania i oceny przydatności destruktu i granulatu asfaltowego do recyklingu na gorąco w otaczarkach (2019). GDDKiA, Warszawa.
  22. Ruttmar, I. & Koźlarek, P. (2018) Możliwości ponownego wykorzystania granulatu asfaltowego z destruktu w oparciu o polskie i niemieckie doświadczenia. Available online: https://kongresdrogowy.pl/wp-content/uploads/files-pdf/LOD_IRuttmar.pdf (accessed on 10 October 2023).
  23. Tomov, M. & Velkoska, C. (2022) Contribution of the quality costs to sustainable development. Production Engineering Archives, 28(2), 164-171.
  24. WT-2 Nawierzchnie asfaltowe na drogach krajowych. Część I: Mieszanki mineralno-asfaltowe. Wymagania techniczne (2014). GDDKiA, Warszawa.
  25. Xiao, F., Xu, L., Zhao, Z. & Hou, X. (2023) Recent applications and developments of reclaimed asphalt pavement in China, 2010-2021. Sustainable Materials and Technologies, 37, e00697.
  26. Yu, X., Xie, Y., Yao, H. & Wang, S. (2023) Excellent low temperature performance for modified asphalt by finely dispersed sidewall tire rubber. Construction and Building Materials, 392, 131939.
  27. Zieliński, P. (2022) Testing of asphalt mixtures containing an addition of reclaimed asphalt shingles. Roads and Bridges – Drogi i Mosty, 21, 277-292.
DOI: https://doi.org/10.17512/bozpe.2024.13.02 | Journal eISSN: 2544-963X | Journal ISSN: 2299-8535
Language: English
Page range: 15 - 22
Published on: Jun 22, 2024
Published by: Technical University in Czestochowa
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Paula Jędrzejczyk, Zbigniew Respondek, published by Technical University in Czestochowa
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.