Have a personal or library account? Click to login
The Relevance of Trend Variables for the Prediction of Corporate Crises and Insolvencies Cover

The Relevance of Trend Variables for the Prediction of Corporate Crises and Insolvencies

By: Mario Situm  
Open Access
|May 2015

References

  1. Abidali, A. F. & Harris, F., (1995), ‘A methodology for predicting company failure in the construction industry’, Construction Management and Economics, 13: 189 - 196.10.1080/01446199500000023
  2. Agarwal, V. & Taffler, R., (2007), ‘Twenty-five years of the Taffler z-core model: Does it really have predictive ability?’, Accounting and Business Research, 37 (4): 285 - 300.10.1080/00014788.2007.9663313
  3. Ahn, B. S., Cho, S. S. & Kim, C. Y., (2000), ‘The integrated methodology of rough set theory and artificial neural network for business failure prediction’, Expert Systems with Applications, 18: 65 - 74.10.1016/S0957-4174(99)00053-6
  4. Altman, E., I., Sabato, G. & Wilson, N., (2010), ‘The value of non-financial information in small and medium-sized enterprise risk management’, The Journal of Credit Risk, 6 (2): 1 - 33.10.21314/JCR.2010.110
  5. Altman, E. I., Haldeman, R. G. & Narayanan, P., (1977), ‘ZETATM analysis: A new model to identify bankruptcy risk of coprorations’, Journal of Banking and Finance, 1: 29 - 54.10.1016/0378-4266(77)90017-6
  6. Altman, E. I., (1968), ‘Financial ratios, discriminant analysis and the prediction of corporate bankruptcy’, The Journal of Finance, 23: 589 - 609.10.1111/j.1540-6261.1968.tb00843.x
  7. Anandarajan, M., Lee, P. & Anandarajan, A., (2001), ‘Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks’, International Journal of Intelligent Systems in Accounting, Finance & Management, 10: 69 - 81.10.1002/isaf.199
  8. Anderson, R. ,(2007), The credit scoring toolkit: Theory and practice for retail credit risk management and decision automation, (Oxford: Oxford University Press).
  9. Baetge, J., Beuter, H. & Feidicker, M., (1992), ‘Kreditwürdigkeitsprüfung mit Diskriminanzanalyse’, Die Wirtschaftsprüfung, 24: 749 - 761.
  10. Bates, T., (1990), ‘Entrepreneur human capital inputs and small business longevity’, The Review of Economics and Statistics, 72 (4): 551 - 559.10.2307/2109594
  11. Barniv, R., Agarwal, A. & Leach, R., (2002), ‘Predicting bankruptcy resolution’, Journal of Business Finance & Accounting, 29 (3 & 4): 497 - 520.10.1111/1468-5957.00440
  12. Barniv, R. & McDonald, J. B., (1992), ‘Identifying financial distress in the insurance industry: A synthesis of methodological and empirical issues’, The Journal of Risk and Insurance, 59 (4): 543 - 574.10.2307/253344
  13. Barniv, R. & Raveh, A., (1989), ‘Identifying financial distress: A new nonparametric approach’, Journal of Business Finance & Accounting, 16 (3): 361 - 383.10.1111/j.1468-5957.1989.tb00024.x
  14. Beaver, W. H., Kettler, P. & Scholes, M., (1970), ‘The association between market determined and accounting determined risk measures’, The Accounting Review, 45 (4): 654 - 682.
  15. Beaver, W. H., (1966), ‘Financial ratios as predictors of failure’. Journal of Accounting Research: Selected Studies, 4: 71 - 111.10.2307/2490171
  16. Begley, J., Ming, J. & Watts, S., (1996), ‘Bankruptcy classification errors in the 1980s: An empirical analysis of Altman´s and Ohlson´s models’, Review of Accounting Studies, 1: 267 - 284.10.1007/BF00570833
  17. Betts, J. & Belhoul, D., (1987), ‘The effectiveness of incorporating stability measures in company failure models’, Journal of Business Finance & Accounting, 14 (3): 323 - 334.10.1111/j.1468-5957.1987.tb00098.x
  18. Blum, M., (1974), ‘Failing company discriminant analysis’, Journal of Accounting Research, 12 (1): 1 - 25.10.2307/2490525
  19. Bruse, H., (1978), ‘Die Prognosefähigkeit von Kennzahlen bei verschiedenen Maßen für das Unternehmenswachstum’, Zeitschrift für Betriebswirtschaft, 48: 138 - 152.
  20. Bryant, S. M., (1997), ‘A case-based reasoning approach to bankruptcy prediction modelling’, Intelligent Systems in Accounting, Finance and Management, 6: 195 - 214.10.1002/(SICI)1099-1174(199709)6:3<195::AID-ISAF132>3.0.CO;2-F
  21. Burns, R. B. & Burns, R. A., (2008), Business research methods and statistics using SPSS, (London: Sage Publications).
  22. Butera, G. & Faff, R., (2006), ‘An integrated multi-model credit rating system for private firms’, Review of Quantitative Finance & Accounting, 27: 311 - 340.10.1007/s11156-006-9434-7
  23. Chancharat, N., Tian, G., Davy, P., McCrae, M. & Lodh, S. (2010), ‘Multiple states of financially distressed companies: Tests using a competing risk-model’, Australasian Accounting Business and Finance Journal, 4 (4): 27 - 44.
  24. Charitou, A., Neophytou, E. & Charalambous, C., (2004), ‘Predicting corporate failure: Empirical evidence for the UK’, European Accounting Review, 13 (3): 465 - 497.10.1080/0963818042000216811
  25. Chaudhuri, A., (2013), ‘Bankruptcy prediction using Bayesian, hazard, mixed logit and rough Bayesian models: A comparative analysis’, Computer and Information Science, 6 (2): 103 - 125.10.5539/cis.v6n2p103
  26. Chava, S. & Jarrow, R. A., (2004), ‘Bankruptcy prediction with industry effects’, Review of Finance, 8: 537 - 569.10.1093/rof/8.4.537
  27. Chen, J., Marshall, B. R., Zhang, J. & Ganesh, S., (2006), ‘Financial distress prediction in China’, Review of Pacific Basin Financial Markets and Policies, 9 (2): 317 - 336.10.1142/S0219091506000744
  28. Cheng, W.-Y., Su, E. & Li, S.-J., (2006), ‘A financial distress pre-warning study by fuzzy regression model of TSE-listed companies’, Asian Academy of Management Journal of Accounting and Finance, 2 (2): 75 - 93.
  29. Chi, L.-C. & Tang, T.-C., (2006), ‘Bankruptcy prediction: Application of logit analysis in export credit risks’, Australian Journal of Management, 31 (1): 17 - 27.10.1177/031289620603100102
  30. Coats, P. K. & Fant, F. L., (1993), ‘Recognizing financial distress patterns using a neural network tool’, Financial Management, 22: 142 - 155.10.2307/3665934
  31. Cressy, R., (2006), ‘Why do most firms die young?’, Small Business Economics, 26: 103 - 116.10.1007/s11187-004-7813-9
  32. Dambolena, I. G. & Khoury, S. J., (1980), ‘Ratio stability and corporate failure’, The Journal of Finance, 35 (4): 1017 - 1026.10.1111/j.1540-6261.1980.tb03517.x
  33. DeAngelo, H. & DeAngelo, L., (1990), ‘Dividend policy and financial distress: An empirical investigation of troubled NYSE firms’, The Journal of Finance, 45 (5): 1415 - 1431. 10.1111/j.1540-6261.1990.tb03721.x
  34. Dietrich, J., Arcelus, F. J. & Srinivasan, G., (2005), ‘Predicting financial failure: Some evidence from new Brunswick agricultural co-ops’, Annals of Public and Cooperative Economics, 76 (2): 179 - 194.10.1111/j.1370-4788.2005.00275.x
  35. Dimitras, A. I., Slowinski, R., Susmaga, R. & Zopounidis, C., (1999), ‘Business failure prediction using rough sets’, European Journal of Operational Research, 114: 263 - 280.10.1016/S0377-2217(98)00255-0
  36. Dirickx, Y. & van Ladeghem, G., (1994), ‘Statistical failure prevision problems’, Tijdschrift voor Economie en Management. 39 (4): 429 - 462.
  37. Drobetz, W. & Wanzenried, G., (2006), ‘What determines the speed of adjustment to the target capital structure?’, Applied Financial Economics, 16: 941 - 958.10.1080/09603100500426358
  38. Du Jardin, P., (2009), ‘Bankruptcy prediction models: How to choose the most relevant variables?’, Bankers, Markets & Investors, 98: 39 - 46.
  39. Edmister, R. O., (1972), ‘An empirical test of financial ratio analysis for small business failure prediction’, Journal of Financial and Quantitative Analysis, 7: 1477 - 1493.10.2307/2329929
  40. Fanning, K. M. & Cogger, K. O., (1994), ‘A comparative analysis of artificial neural networks using financial distress prediction’, Intelligent Systems in Accounting, Finance and Management, 3: 241 - 252.10.1002/j.1099-1174.1994.tb00068.x
  41. Fawcett, T., (2006), ‘An introduction to ROC analysis’, Pattern Recognition Letters, 27: 861 - 874.10.1016/j.patrec.2005.10.010
  42. Feldesman, M. R., (2002), ‘Classification trees as an alternative to linear discriminant analysis’, American Journal of Physical Anthropology, 119: 257 - 275.10.1002/ajpa.10102
  43. Frydman, H., Altman, E. I. & Kao, D.-L., (1985), ‘Introducing recursive partitioning for financial classification: The case of financial distress’, The Journal of Finance, 40 (1): 269 - 291.10.1111/j.1540-6261.1985.tb04949.x
  44. Gilbert, L. R., Menon, K. & Schwartz, K. B., (1990), ‘Predicting bankruptcy for firms in financial distress’, Journal of Business Finance & Accounting, 17 (1): 161 - 171.10.1111/j.1468-5957.1990.tb00555.x
  45. Gombola, M. J., Haskins, M. E., Ketz, E. J. & Williams, D. D., (1987), ‘Cash flow in bankruptcy prediction’, Financial Management, 16: 55 - 65.10.2307/3666109
  46. Grunert, J., Norden, L. & Weber, M., (2005), ‘The role of non-financial factors in internal credit ratings’, Journal of Banking & Finance, 29: 509 - 531.10.1016/j.jbankfin.2004.05.017
  47. Hanley, J. & McNeil, B., (1983), ‘A method of comparing the areas under receiver operating characteristic curves derived from the same cases’, Radiology, 148 (3): 839 - 843.10.1148/radiology.148.3.6878708
  48. Hanley, J. & McNeil, B., (1982), ‘The meaning and the use of the area under a receiver operating characteristic (ROC) curve’, Radiology, 143 (1): 29 - 36.10.1148/radiology.143.1.7063747
  49. Hauschildt, J., Rösler, J. & Gemünden, H. G., (1984), ‘Der Cash Flow - Ein Krisensignalwert?’, Die Betriebswirtschaft, 44 (3): 353 - 370.
  50. Hauser, R. P. & Booth, D., (2011), ‘Predicting bankruptcy with robust logistic regression’, Journal of Data Science, 9: 565 - 58410.6339/JDS.201110_09(4).0006
  51. Herzog, S., Koziol, C. & Thabe, T., (2008), ‘Optimal credit ratings’, International Journal of Theoretical and Applied Finance, 11 (2): 225 - 247.10.1142/S0219024908004786
  52. Hillegeist, S. A., Keating, E. K., Cram, D. P. & Lundstedt, K. G., (2004), ‘Assessing the probability of bankruptcy’, Review of Accounting Studies, 9: 5 - 34.10.1023/B:RAST.0000013627.90884.b7
  53. Ho, R., (2006), Handbook of univariate and multivariate data analysis and interpretation with SPSS, (Boca Raton: Chapman & Hall).10.1201/9781420011111
  54. Hong, H. & Rappaport, A., (1978), ‘Debt capacity, optimal capital structure, and capital budgeting analysis’, Financial Management, 7 (3): 7 - 11.10.2307/3665004
  55. Hopwood, W. S. & Schaefer, T. F., (1988b), ‘Incremental information content of earnings and nonearnings- based financial ratios’, Contemporary Accounting Research, 5 (1): 318 - 342.10.1111/j.1911-3846.1988.tb00708.x
  56. Hopwood, W., McKeown, J. & Mutchler, J., (1988a), ‘The sensitivity of financial distress prediction models to departures from normality’, Contemporary Accounting Research, 5 (1): 284 - 298.10.1111/j.1911-3846.1988.tb00706.x
  57. Houghton, K. A. & Woodliff, D. R., (1987), ‘Financial ratios: The prediction of corporate ´success´ and failure’, Journal of Business Finance & Accounting, 14 (4): 537 - 554. 10.1111/j.1468-5957.1987.tb00111.x
  58. Huang, S.-H., Tsai, C.-F., Yen, D.C. & Cheng, Y.-L., (2008), ‘A hybrid financial analysis model for business failure prediction’, Expert Systems with Applications, 35: 1034 - 1040.10.1016/j.eswa.2007.08.040
  59. Iazzolini, G., Migliano, G. & Gregorace, E., (2013), ‘Evaluating intellectual capital for supporting credit risk assessment: An empirical study’, Investment Management and Financial Innovations, 10 (2): 44 - 54.
  60. Kahya, E. & Theodossiou, P., (1999), ‘Predicting corporate financial distress: A time-series CUSUM methodology’, Review of Quantitative Finance and Accounting, 13: 323 - 345.10.1023/A:1008326706404
  61. Kane, G. D., Richardson, F. M. & Meade, N. L., (1998), ‘Rank transformation and the prediction of corporate failure’, Contemporary Accounting Research, 15 (2): 145 - 166.10.1111/j.1911-3846.1998.tb00553.x
  62. Kim, H. & Gu, Z., (2006), ‘Predicting restaurant bankruptcy: A logit model in comparison with a discriminant model’, Journal of Hospitality & Tourism Research, 30 (4): 474 - 493.10.1177/1096348006290114
  63. Klecka, W. R., (1980), Discriminant analysis, (Newbury Park: SAGE) Korol, T. & Korodi, A., (2011), ‘An evaluation of effectiveness of fuzzy logic model in predicting the business bankruptcy’, Romanian Journal of Economic Forecasting, 3: 92 - 107.
  64. Laitinen, E. K. & Laitinen, T., (2000), ‘Bankruptcy prediction: Application of the Taylor´s expansion in logistic regression’, International Review of Financial Analysis, 9: 327 - 349.10.1016/S1057-5219(00)00039-9
  65. Lambert, R., Leuz, C. & Verrechia, R. E., (2007), ‘Accounting information, disclosure, and the cost of capital’, Journal of Accounting Research, 45 (2): 385 - 420.10.1111/j.1475-679X.2007.00238.x
  66. Lau, A. H.-L., (1987), ‘A five-state financial distress prediction model’, Journal of Accounting Research, 25 (1): 127 - 138.10.2307/2491262
  67. Li, H., Sun, J. & Wu, J., (2010), ‘Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods’, Expert Systems with Applications, 37: 5895 - 5904.10.1016/j.eswa.2010.02.016
  68. Li, J., (2012), ‘Prediction of corporate bankruptcy from 2008 through 2011’, Journal of Accounting and Finance, 12 (1): 31 - 41.
  69. Liang, H.-Y. & Bathala, C., (2009), ‘Tradeoff or pecking order: Capital structure policy suitable for financially distressed firms’, The IUP Journal of Applied Finance, 15 (10): 5 - 18.
  70. Lin, F., Liang, D. & Chen, E., (2011), ‘Financial ratio selection for business crisis prediction’, Expert Systems with Applications, 38: 15094 - 15102.10.1016/j.eswa.2011.05.035
  71. Lin, R.-H., Wang, Y.-T., Wu, C.-H. & Chuang, C.-L., (2009), ‘Developing business failure prediction model via RST, GRA and CBR’, Expert Systems with Applications, 36: 1593 - 1600.10.1016/j.eswa.2007.11.068
  72. Low, S.-W., Nor, F. M. & Yatim, P., (2001), ‘Predicting corporate financial distress using the logit model: The case of Malaysia’, Asian Academy of Management Journal, 6 (1): 49 - 61.
  73. Madrid-Guijarro, A., Garcia-Pèrez-de-Lema, D. & van Auken, H., (2011), ‘An analysis of non-financial factors associated with financial distress’, Entrepreneurship & Regional Development, 23 (3 - 4): 159 - 186.10.1080/08985620903233911
  74. Martin, J. D. & Scott, D. F. (1976), ‘Debt capacity and the capital budgeting decision’, Financial Management, 5 (2): 7 - 14.10.2307/3665175
  75. McKee. T. E., (2007), ‘Altman´s 1968 bankruptcy prediction model revisited via genetic programming: New wine from an old bottle or a better fragmentation process?’, Journal of Emerging Technologies in Accounting, 4: 87 - 101.10.2308/jeta.2007.4.1.87
  76. McLachlan, G. J., (2004), Discriminant analysis and statistical pattern recognition, (New Jersey: John Wiley & Sons).
  77. Mensah, Y. M., (1984), ‘An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study’, Journal of Accounting Research, 22 (1): 380 - 395.10.2307/2490719
  78. Milburn, A. J., (2008), ‘The relationship between fair value, market value, and efficient markets’, Accounting Perspectives, 7 (4): 293 - 316.10.1506/ap.7.4.2
  79. Min, J. H. & Lee, Y.-C., (2008), ‘A practical approach to credit scoring’, Expert Systems with Applications, 35: 1762 - 1770. 10.1016/j.eswa.2007.08.070
  80. Molina, C. A. & Preve, L. A., (2009), ‘Trade receivables policy of distressed firms and its effect on the costs of financial distress’, Financial Management, 38 (3): 663 - 686.10.1111/j.1755-053X.2009.01051.x
  81. Molina, C. A., (2005), ‘Are firm underleveraged? An examination of the effect of leverage on default probabilities’, The Journal of Finance, 60 (3): 1427 - 1459.10.1111/j.1540-6261.2005.00766.x
  82. Mossman, C. E., Bell, G. G., Swartz, L. M. & Turtle, H., (1998), ‘An empirical comparison of bankruptcy models’, The Financial Review, 33: 35 - 54.10.1111/j.1540-6288.1998.tb01367.x
  83. Muller, G. H., Steyn-Bruwer, B. W. & Hamman, W. D., (2009), ‘Predicting financial distress of companies listed on JSE - A comparison of techniques’, South African Journal of Business & Management, 40 (1): 21 - 32.10.4102/sajbm.v40i1.532
  84. Nam, J.-H. & Jinn, T., (2000), ‘Bankruptcy prediction: Evidence from Korean listed companies during the IMF crisis’, Journal of International Financial Management and Accounting, 11 (3): 178 - 197.10.1111/1467-646X.00061
  85. Neopyhtou, E. & Mar Molinero, C., (2004), ‘Predicting corporate failure in the UK: A multidimensional scaling approach’, Journal of Business Finance & Accounting, 31 (5 & 6): 677 - 710.10.1111/j.0306-686X.2004.00553.x
  86. Neves, J. C. & Vieira, A., (2006), ‘Improving bankruptcy prediction with hidden layer learning vector quantization’, European Accounting Review, 15 (2): 253 - 271.10.1080/09638180600555016
  87. Nissim, D. & Penman, S. H., (2003), ‘Financial statement analysis of leverage and how it informs about profitability and price-to-book ratios’, Review of Accounting Studies, 8: 531 - 560.10.1023/A:1027324317663
  88. Ohlson, J. A., (1980), ‘Financial ratios and the probabilistic prediction of bankruptcy’, Journal of Accounting Research, 18 (1): 109 - 131.10.2307/2490395
  89. Pacey, J. W. & Pham, T. M., (1990), ‘The predictiveness of bankruptcy models: Methodological problems and evidence’, Australian Journal of Management, 15 (2): 315 - 337.10.1177/031289629001500206
  90. Pang, J. & Kogel, M., (2013), ‘Retail bankruptcy prediction’, American Journal of Economics and Business Administration, 5 (1): 29 - 46.10.3844/ajebasp.2013.29.46
  91. Paradi, J. C., Asmild, M. & Simak, P. C., (2004), ‘Using DEA and worst practice DEA in credit risk evaluation’, Journal of Productivity Analysis, 21: 153 - 165.10.1023/B:PROD.0000016870.47060.0b
  92. Pervan, I. & Kuvek, T., (2013), ‘The relative importance of financial ratios and nonfinancial variables in predicting of insolvency’, Croatian Operational Research Review, 4: 187 - 198.
  93. Pervan, I., Pervan, M. & Vukoja, B., (2011), ‘Prediction of company bankruptcy using statistical techniques - Case of Croatia’, Croatian Operational Research Review, 2: 158 - 167.
  94. Pervan, M. & Visic, J., (2012), ‘Influence of firm size on its business success’, Croatian Operational Research Review, 3: 213 - 223.
  95. Piotroski, J. D., (2000), ‘Value investing: The use of historical financial statement information to separate winners from loser’, Journal of Accounting Research, 38: 1 - 41.10.2307/2672906
  96. Pindado, J., Rodrigues, L. & de la Torre, C., (2008), ‘Estimating financial distress likelihood’, Journal of Business Research, 61: 995 - 1003.10.1016/j.jbusres.2007.10.006
  97. Platt, H. D. & Platt, M. B., (2008), ‘Financial distress comparison across three global regions’, Journal of Risk and Financial Management, 1: 129 - 162.10.3390/jrfm1010129
  98. Platt, H. D. & Platt, M. B., (2002), ‘Predicting corporate financial distress: Reflections on choice-based sample bias’, Journal of Economics and Finance, 26: 184 - 199.10.1007/BF02755985
  99. Platt, H. D., Platt, M. B. & Chen, G., (1995), ‘Sustainable growth rates of firms in financial distress’, Journal of Economics and Finance, 19 (2): 147 - 15110.1007/BF02920515
  100. Pompe, P. P. & Bilderbeek, J., (2005), ‘Bankruptcy prediction: The influence of the year prior to failure selected for model building and the effects in a period of economic decline’, Intelligent Systems in Accounting, Finance and Management, 13: 95 - 112.10.1002/isaf.259
  101. Prasad, D. & Puri, Y. R., (2005), ‘Does combining alternate bankruptcy prediction models improve forecasting accuracy?’, The International Journal of Finance, 3: 3581 - 3602.
  102. Pretorius, M., (2008), ‘Critical variables of business failure: A review and classification framework’, South African Journal of Economic and Management Sciences, 11 (4): 408 - 430.
  103. Raykov, T. & Marcoulides, G. A., (2008), Introduction to applied multivariate analysis, (New York: Sachs, L., (1997), Angewandte Statistik: Anwendung statistischer Methoden, (Berlin-Heidelberg: Springer).
  104. Samad, F., Yusof, M. A. M. & Shaharudin, R. S., (2009), ‘Financial distress risk and stock returns: Evidence form the Malaysian stock market’, Journal of International Finance and Economics, 9 (2): 19 - 38.
  105. Schneider, D., (1995), ‘Eine Warnung vor Frühwarnsystemen’, Der Betrieb, 38 (9): 1489 - 1494.
  106. Sen, T. K., Ghandforoush, P. & Stivason, C. T., (2004), ‘Improving prediction of neural networks: A study of two financial prediction tasks’, Journal of Applied Mathematics and Decision Sciences, 8 (4): 219 - 233.10.1207/s15327612jamd0804_2
  107. Setiono, B. & Strong, N., (1998). ‘Predicting stock returns using financial statement information’, Journal of Business Finance & Accounting, 25 (5 & 6): 631 - 657.10.1111/1468-5957.00205
  108. Shin, K-S., Lee, T. S. & Kim, H.-j., (2005), ‘An application of support vector machines in bankruptcy prediction model’, Expert Systems with Applications, 28: 127 - 135.10.1016/j.eswa.2004.08.009
  109. Shumway, T., (2001), ‘Forecasting bankruptcy more accurately: A simple hazard model’, The Journal of Business, 74 (1): 101 - 124.10.1086/209665
  110. Silva, D. A. P., Stam, A. & Neter, J., (2002), ‘The effects of misclassification cost and skewed distributions in two-group classification’, Communication in Statistical Simulation, 31 (3): 401 - 423.10.1081/SAC-120003849
  111. Situm, M., (2014b), ‘The inability of gearing-ratio as predictor for early warning systems’, Business Systems Research Journal, 5 (2): 23 - 45.10.2478/bsrj-2014-0008
  112. Situm, M., (2014a), ‘The age and the size of the firm as relevant predictors for bankruptcy’, Journal of Applied Economics and Business, 2 (1): 5 - 30.
  113. Situm, M., (2008), Insolvenzfrüherkennung mit der Diskriminanzanalyse: Grundlagen, Ansätze, praktische und theoretische Relevanz, (Saabrücken: Dr. Müller Verlag).
  114. Sobehart, J., Keenan, S. & Stein, R., (2001), ‘Benchmarking quantitative default risk model: A validation methodology’, Algo Research Quarterly, 4 (1 & 2): 57 - 71.
  115. Skogsvik, K. & Skogsvik, S., (2013), ‘On the choice based sample bias in probabilistic bankruptcy prediction’, Investment Management and Financial Innovation, 10 (1): 29 - 37.
  116. Subhash, S., (1996), Applied multivariate techniques, (New York: John Wiley & Sons).
  117. Sudarsanam, S. & Lai, J., (2001), ‘Corporate financial distress and turnaround strategies: An empirical analysis’, British Journal of Management, 12: 183 - 199.10.1111/1467-8551.00193
  118. Theodossiou, P., Kahya, E., Saidi, R. & Philippatos, G., (1996), ‘Financial distress and corporate acquisitions: Further empirical evidence’, Journal of Business Finance & Accounting, 23 (5 & 6): 699 - 719.10.1111/j.1468-5957.1996.tb01149.x
  119. Thomas, L. C., Edelman, D. B. & Crook, J. N., (2002), Credit scoring and its applications, (Philadelphia: SIAM).10.1137/1.9780898718317
  120. Thornhill, S. & Amit, R., (2003), ‘Learning about failure: Bankruptcy, firm age, and the resource-based view’, Organization Science, 14 (5): 497 - 509.10.1287/orsc.14.5.497.16761
  121. Tsai, B.-H., (2013), ‘An early warning system of financial distress using multinomial logit models and a bootstrapping approach’, Emerging Markets Finance & Trade, 49 (2): 43 - 69.10.2753/REE1540-496X4902S203
  122. Tsai, L.-K., Tserng, H.-P., Liao, H.-H., Chen, P.C. & Wang, W.-P., (2012), ‘Integration of accounting- based and option-based models to predict construction contractor default’, Journal of Marine Science and Technology, 20 (5): 479 - 484.
  123. Turetsky, H. F. & McEwen, R. A., (2001), ‘An empirical investigation of firm longevity: A model of the ex ante predictors of financial distress’, Review of Quantitative Finance and Accounting, 16: 323 - 343.10.1023/A:1011291425075
  124. Wang, W. T. & Zhou, X., (2011), ‘Could traditional financial indicators predict the default of small and medium-sized enterprises?’, International Conference on Economics and Finance Research, 4: 72 - 76.
  125. Ward, T. J., (1999), ‘A review of financial distress research methods and recommendations for future research’, Academy of Accounting and Financial Studies Journal, 3 (1): 160 - 178.
  126. Whitaker, R. B., (1999), ‘The early stages of financial distress’, Journal of Economics and Finance, 23 (2): 123 - 133.10.1007/BF02745946
  127. Wilson, N., Chong, K. W. & Peel, M. J. (1995), ‘Neural network simulation and the prediction of corporate outcomes: Some empirical findings’, International Journal of Economics of Business, 2 (1): 31 - 50.10.1080/758521095
  128. Yeh, C.-C., Chi, D.-J. & Hsu, M.-F., (2010), ‘A hybrid approach of DEA, rough set and support vector machines for business failure prediction’, Expert Systems with Applications, 37: 1535 - 1541.10.1016/j.eswa.2009.06.088
  129. Yim, J. & Mitchell, H., (2007), ‘Predicting financial distress in the Australian financial service industry’, Australian Economic Papers, 46 (4): 375 - 388.10.1111/j.1467-8454.2007.00326.x
  130. Yip, A. Y. N., (2006), ‘Business failure prediction: A case-based reasoning approach’, Review of Pacific Basin Financial Markets and Policies, 9 (3): 491 - 508.10.1142/S021909150600080X
  131. Youn, H. & Gu, Z., (2010), ‘Predict US restaurant firm failures: The artificial neural network model versus logistic regression model’, Tourism and Hospitality Research, 10: 171 - 1k87.10.1057/thr.2010.2
  132. Zmijewski, M. E., (1984), ‘Methodological issues related to the estimation of financial distress prediction models’, Journal of Accounting Research, 22: 59 - 82. 10.2307/2490859
DOI: https://doi.org/10.1515/zireb-2015-0002 | Journal eISSN: 1849-1162 | Journal ISSN: 1331-5609
Language: English
Page range: 17 - 49
Published on: May 22, 2015
Published by: University of Zagreb, Faculty of Economics & Business
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Mario Situm, published by University of Zagreb, Faculty of Economics & Business
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.