Have a personal or library account? Click to login

Construction of Uniformly Distributed Linear Recurring Sequences Modulo Powers of 2

Open Access
|Jul 2018

References

  1. [1] BRENT, R. P.—ZIMMERMANN, P.: The great trinomial hunt, Notices of the American Mathematical Society 58 (2011), 233–239.
  2. [2] FOLLÁTH, J.: Construction of Pseudorandom Binary Sequences Using Additive Characters Over GF (2k), Periodica Mathematica Hungarica 57 (2008), 73–81.10.1007/s10998-008-7073-1
  3. [3] FOLLÁTH, J.—HUSZTI, A.—PETHŐ, A.: DESignIn Asymmetric Authentication System, Proceedings of ICAI’07 7th International Conference on Applied Informatics 1 (2007), 53–61.
  4. [4] HERENDI, T.: Uniform distribution of linear recurring sequences modulo prime powers, Finite Fields and Applications 10 (2004), 1–23.10.1016/S1071-5797(02)00007-2
  5. [5] HUSZTI, A.: A Secure Electronic Voting Scheme, Periodica Polytechnica Electrical Engineering 51 (2007), 141–146.10.3311/pp.ee.2007-3-4.08
  6. [6] HUSZTI, A.—PETHŐ, A.: ASecure ElectronicExamSystem, Publicationes Mathematicae Debrecen 77 (2010), 299–312.10.5486/PMD.2010.4682
  7. [7] KNUTH, D. E.: The Art of Computer Programming. Vol. 2. Addison-Wesley, 1973.
  8. [8] LIDL, R.—NIEDERREITER, H.: Introduction to finite fields and their applications. Cambridge University Press, 1986.
  9. [9] MATSUMOTO, M.—NISHIMURA, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation 8 (1998), 3–30.10.1145/272991.272995
  10. [10] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.10.4064/aa-82-4-365-377
  11. [11] MENEZES, A.—VAN OORSCHOT, P.—VANSTONE, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton new York London Tokyo, 1996.
  12. [12] NIEDERREITER, H.: Distribution of Fibonacci numbers mod 5k, Fibonacci Quart. 10 (1972), 373–374.
  13. [13] NIEDERREITER, H.: Pseudo-random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.10.1137/1.9781611970081
  14. [14] NIEDERREITER, H.—SHIUE, J.: Equidistribution of linear recurring sequences in finite fields, Indag. Math. 39 (1977), 397–405.10.1016/1385-7258(77)90054-3
  15. [15] NIEDERREITER, H.—SHIUE, J.: Equidistribution of linear recurring sequences in finite fields. II, Acta Arith. 38 (1980), 197–207.10.4064/aa-38-2-197-207
  16. [16] TURNWALD, G.: Gleichverteilung von linearen rekursiven Folgen, Sitzungber., Abt. II, Oesterr. Akad. Wiss., Math.-Naturwiss. 193 (1985), 201–245.
  17. [17] TURNWALD, G.: Uniform distribution of second-order linear recurring sequences, Proc. Amer. Math. Soc. 96 (1986), 189–198.10.1090/S0002-9939-1986-0818442-1
DOI: https://doi.org/10.1515/udt-2018-0006 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 109 - 129
Submitted on: Sep 12, 2016
Accepted on: Nov 21, 2017
Published on: Jul 20, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Tamás Herendi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.