[2] AISTLEITNER, CH.: On the inverse of the discrepancy for infinite dimensional infinite sequences, J. Complexity 29 (2013), 182â194.10.1016/j.jco.2012.06.002
[5] BILYK, D.âLACEY, M. T. â VAGHARSHAKYAN, A.: On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), 2470â2502.10.1016/j.jfa.2007.09.010
[8] DICK, J.âKUO, F. Y.âSLOAN, I. H.: High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013), 133â288.10.1017/S0962492913000044
[9] DICK, J.âPILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188
[10] DOERR, B.âGNEWUCH, M.âSRIVASTAV, A.: Bounds and constructions for the star-discrepancy via ÎŽ-covers, J. Complexity 21 (2005), 691â709.10.1016/j.jco.2005.05.002
[12] GNEWUCH, M.: Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy, J. Complexity 24 (2008), 154â172.10.1016/j.jco.2007.08.003
[13] GNEWUCH, M.: Gnewuch, M. Entropy, randomization, derandomization, and discrepancy. In: Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proc. Math. Stat. Vol. 23, Springer-Verlag, Heidelberg, 2012, pp. 43â78,10.1007/978-3-642-27440-4_3
[14] HEINRICH, S.âNOVAK, E.âWASILKOWSKI, G. W.âWOĆčNIAKOWSKI, H.: The inverse of the star discrepancy depends linearly on the dimension, Acta Arith. 96 (2001), 279â302.10.4064/aa96-3-7
[15] HINRICHS, A.: Covering numbers, Vapnik-Äervonenkis classes and bounds on the star-discrepancy, J. Complexity 20 (2004), 477â483.10.1016/j.jco.2004.01.001
[19] LARCHER, G.âPILLICHSHAMMER, F.: Metrical lower bounds on the discrepancy of digital Kronecker-sequences, J. Number Th. 135 (2014), 262â283.10.1016/j.jnt.2013.08.010
[20] LEOBACHER, G.âPILLICHSHAMMER, F.: Introduction to Quasi-Monte Carlo Integration and Applications. In: Compact Textbooks in Mathematics, BirkhĂ€user, 2014.
[22] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. In: CBMS-NSF Series in Applied Mathematics Vol. 63, SIAM, Philadelphia, 1992.10.1137/1.9781611970081
[24] NOVAK, E.âWOĆčNIAKOWSKI, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. EMS, ZĂŒrich, 2010.10.4171/084