Have a personal or library account? Click to login
Palindromic Closures and Thue-Morse Substitution for Markoff Numbers Cover

Palindromic Closures and Thue-Morse Substitution for Markoff Numbers

Open Access
|Jan 2018

References

  1. A] AIGNER, M.: Markov’s Theorem and 100 Years of the Uniqueness Conjecture, Springer-Verlag, Berlin, 2013. 10.1007/978-3-319-00888-2
  2. [Be] BERSTEL, J.: Sturmian and episturmian words. In: Algebraic informatics, Springer-Verlag, Berlin, 2007, pp. 23-47.10.1007/978-3-540-75414-5_2
  3. [BS] BERSTEL, J.-S´E´EBOLD, P.: Sturmian words, (M. Lothaire, ed). In: Algebraic Combinatorics on Words, Encyclopedia of Math. and Appl. Vol. 90, Cambridge University Press, 2002. pp. 45-110.
  4. [BLRS] BERSTEL, J.-LAUVE, V.-REUTENAUER, C.-SALIOLA, V.: Combinatorics on Words: Christoffel Words and Repetitions in Words, CRM Monograph series, AMS, 2008.10.1090/crmm/027
  5. [BdLR] BERTHÉ, V.-DE LUCA, A.-REUTENAUER, C.: On an involution of Christoffel words and Sturmian morphisms, European Journal of Combinatorics 29 (2008), 535-553.10.1016/j.ejc.2007.03.001
  6. [BPTV] BLONDIN MASS´E, A.-PAQUIN, G.-TREMBLAY, H.-VUILLON, L.: On generalized pseudostandard words over binary alphabets, J. Integer Seq., 16 (2013), no. 2, Article 13.2.1.
  7. [B] BOMBIERI, E.: Continued fractions and the Markoff tree, Expositiones Mathematicae 25 (2007), 187-213.10.1016/j.exmath.2006.10.002
  8. [BRS] BUGEAUD, Y.-REUTENAUER, C.-SIKSEK, S.: A Sturmian sequence related to the uniqueness conjecture for Markoff numbers. Theoretical Computer Science, 410 (2009), no. 30-32, 2864-2869.
  9. [C1] COHN, H.: Approach to Markoff’s minimal forms through modular functions Ann. of Math. 61 (1955), 1-12.10.2307/1969618
  10. [C2] Markoff’s forms and primitive words, Math, Ann. 196 (1972), 8-22.
  11. [C3] Growth types of Fibonacci and Markoff, 17 (1979), 178-183.
  12. [CF] CUSICK, T. W.-FLAHIVE, V.: The Markoff and Lagrange spectra, AMS, 1989.10.1090/surv/030
  13. [F] FROBENIUS, G.: ¨Uber die Markoffschen Zahlen. Sitzungsberichte der K¨oniglich Preussischen Akademie der Wissenschaften, 26 (1913), 458-487.
  14. [M1] MARKOFF, A. A.: Sur les formes quadratiques binaires ind´efinies, Mathematische Annalen 15, (1879), 381-496.10.1007/BF02086269
  15. [M2] Sur les formes quadratiques binaires ind´efinies (second m´emoire), Math. Anna. 17 (1880), 379-399.10.1007/BF01446234
  16. [L] LOTHAIRE,M. (et al.): Algebraic combinatorics on words. In: Encyclopedia of Mathematics and its Applications, Vol. 90, Cambridge University Press, Cambridge, 2002.10.1017/CBO9781107326019
  17. [dL] De LUCA, A. Sturmian words: structure, combinatorics, and their arithmetics, Theoretical Computer Science 183 (1997), 45-82.10.1016/S0304-3975(96)00310-6
  18. [dLDL] de LUCA, A.-De LUCA, A.: Pseudopalindrome closure operators in free monoids, Theor. Comput. Sci. 362 (2006), no. 1-3, 282-300.
  19. [J] JUSTIN, J.: Episturmian morphisms and a Galois theorem on continued fractions, Theoretical Informatics and Applications 39 (2005), no. 1, 207-215.
  20. [P] PROPP, J.: The combinatorics of frieze patterns and Markoff numbers, arXiv: math/0511633v4 (2008), 29-34.
  21. [Re1] REUTENAUER, C.: Christoffel Words and Markoff Triples, Integers 9 (2009), 327-332.10.1515/INTEG.2009.027
  22. [Re2] From Christoffel words to Markoff numbers, (in preparation)
  23. [V] VUILLON, L.: Balanced words Bulletin of the Belgian Mathematical Society, 5 (2003), 787-805.
DOI: https://doi.org/10.1515/udt-2017-0013 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 25 - 35
Submitted on: Aug 7, 2016
Accepted on: Jan 20, 2017
Published on: Jan 30, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2018 Christophe Reutenauer, Laurent Vuillon, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.