Have a personal or library account? Click to login
On a Golay-Shapiro-Like Sequence Cover
Open Access
|Jan 2017

References

  1. [1] ALLOUCHE, J.-P.—LIARDET, P.: Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991) 1–27.
  2. [2] BRILLHART, J.—CARLITZ, L.: Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25 (1970) 114–118.10.1090/S0002-9939-1970-0260955-6
  3. [3] BRILLHART, J.—ERDŐS, P.—MORTON, P.: On sums of Rudin-Shapiro coefficients, II, Pacific J. Math. 107 (1983) 39–69.
  4. [4] BRILLHART, J.—MORTON, P.: Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois J. Math. 22 (1978) 126–148.
  5. [5] BRILLHART, J.—MORTON, P.: A case study in mathematical research: The Golay-Rudin-Shapiro sequence, Amer. Math. Monthly 103 (1996) 854–869.
  6. [6] GOLAY, M. J. E.: Statistic multislit spectrometry and its application to the panoramic display of infrared spectra, J. Optical Soc. America 41 (1951) 468–472.
  7. [7] LAFRANCE, P.—RAMPERSAD, N.—YEE, R.: Some properties of a Rudin-Shapiro-like sequence, Adv. Appl. Math. 63 (2015) 19–40.
  8. [8] RUDIN, W.: Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959) 855–859.10.1090/S0002-9939-1959-0116184-5
  9. [9] SHAPIRO, H. S.: Extremal Problems for Polynomials and Power Series, Thesis (M. S.), Massachusetts Institute of Technology, Department of Mathematics, 1951, available at: http://dspace.mit.edu/handle/1721.1/12198
DOI: https://doi.org/10.1515/udt-2016-0021 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 205 - 210
Submitted on: Mar 25, 2016
Accepted on: Jul 25, 2016
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Jean-Paul Allouche, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.