Have a personal or library account? Click to login
On the Gaussian Limiting Distribution of Lattice Points in a Parallelepiped Cover

On the Gaussian Limiting Distribution of Lattice Points in a Parallelepiped

Open Access
|Jan 2017

References

  1. [BW] BAKER, A.—WUSTHOLZ, G.: Logarithmic Forms and Diophantine Geometry, Cambridge University Press, Cambridge, 2007.10.1017/CBO9780511542862
  2. [Be1] BECK, J.: Randomness ofn2$n\sqrt 2 $ mod 1 and a Ramsey property of the hyperbola. Sets, graphs and numbers (G. Halsz ed. et al.), Sets, graphs and numbers. A birthday salute to Vera T.Ss and Andrs Hajnal. Colloq. Math. Soc. Jnos Bolyai. 60, (1992) 23–66.
  3. [Be2] BECK, J.: Randomness in lattice point problems, Discrete Math. 229 (2001), no. 1–3, 29–55.
  4. [Be3] BECK, J.: Probabilistic Diophantine Approximation: Randomness in Lattice Point Counting, Springer, New York, 2014.10.1007/978-3-319-10741-7
  5. [BC] BECK, J.—CHEN, W. W. L.: Irregularities of Distribution. Cambridge Univ. Press, Cambridge, 1987.10.1017/CBO9780511565984
  6. [Bl] BLEHER, P.: Trace formula for quantum integrable systems, lattice-point problem, and small divisors (D. A. Hejhal ed. et al.), in: Emerging Applications of Number Theory. Based on the proceedings of the IMA summer program, Minneapolis, MN, USA, July 15-26, 1996. IMA Vol. Math. Appl. 109 (1999), pp. 1–38.
  7. [BS] BOREVICH, A. I.—SHAFEREVITCH, I. R.: Number Theory, Academic Press, New York, 1966.
  8. [By] BYKOVSKIĬ, V. A.: On the right order of error of optimal cubature formulas in the spaces with dominating derivation and L2discrepancy of nets, Dalnevost. Science Center of the USSR Acad. of Sciences, Vladivostok, 1985. (In Russian)
  9. [DrTi] DRMOTA, M. — TICHY, R.: Sequences, Discrepancies and Applications, in: Lecture Notes in Mathematics Vol. 1651, Springer-Verlag, Berlin, 1997.
  10. [ESS] EVERTSE, J. H.—SCHLICKEWEI, H. P.—SCHMIDT, W. M.: Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), no. 3, 807–836.
  11. [Fr] FROLOV, K. K.: Upper bound of the discrepancy in metric Lp, 2 ≤ p < ∞. Dokl. Akad. Nauk SSSR 252 (1980), no. 4, 805–807 (In Russian); English translation: Soviet Math. Dokl. 21 (1980), no. 3, 840–842.
  12. [GL] GRUBER, P. M.—LEKKERKERKER, C. G.: Geometry of Numbers, North-Holland, New-York, 1987.
  13. [HuRu] HUGHES, C. P.—RUDNICK, Z.: On the distribution of lattice points in thin annuli, Int. Math. Res. Not. 13 (2004), 637–658.10.1155/S1073792804131681
  14. [Le1] LEVIN, M. B.: The multidimensional generalization of J.Beck ’Randomness ofn2$n\sqrt 2 $ mod1 . . .’ and a.s. invariance principle ford-actions of toral automorphisms, Abstracts of Annual Meeting of the Israel Mathematical Union (2002), http://imu.org.il/Meetings/IMUmeeting2002/ergodic.txt
  15. [Le2] LEVIN, M. B.: On low discrepancy sequences and low discrepancy ergodic transformations of the multidimensional unit cube, Israel J. Math. 178 (2010), 61–106.10.1007/s11856-010-0058-1
  16. [Le3] LEVIN, M. B.: Central Limit Theorem for+d\font\msbm=MSBM10${\msbm Z}_ + ^d $-actions by toral endomorphisms, Electronic Journal of Probability 18 (2013), no. 35, 42 pp.
  17. [Le4] LEVIN, M. B.: On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom. 54 (2015), no. 4, 826–870.
  18. [LeMe] LEVIN, M. B.—MERZBACH, E.: Central limit theorems for the ergodic adding machine, Israel J. Math. 134 (2003), 61–92.10.1007/BF02787403
  19. [Ma] MARKLOF, J.: Energy level statistics, lattice point problems, and almost modular functions, Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006, pp. 163–181.10.1007/978-3-540-31347-2_3
  20. [Mo] MORI, T.: On the rate of convergence in the martingale central limit theorem. Studia Sci. Math. Hungar. 12 (1977), no. 3–4, 413–417.
  21. [Si] SINAĬ, YA. G.: Poisson distribution in a geometric problem. Dynamical systems and statistical mechanics (Moscow, 1991), Adv. Soviet Math. 3, Amer. Math. Soc., Providence, RI, 1991. pp. 199–214.10.1090/advsov/003/08
  22. [Skr] SKRIGANOV, M. M.: Construction of uniform distributions in terms of geometry of numbers, Algebra i Analiz 6 (1994), no. 3 200–230; Reprinted in: St. Petersburg Math. J. 6(1995), no. 3 635–664.
  23. [SW] STEIN, E.—WEISS, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New-York, 1971.10.1515/9781400883899
DOI: https://doi.org/10.1515/udt-2016-0014 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 45 - 89
Submitted on: Sep 10, 2015
Accepted on: Oct 19, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Mordechay B. Levin, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.