Have a personal or library account? Click to login
Tractability of Multivariate Integration Using Low-Discrepancy Sequences Cover

Tractability of Multivariate Integration Using Low-Discrepancy Sequences

By: Shu Tezuka  
Open Access
|Jan 2017

References

  1. [1] ATANASSOV, E. I.: On the discrepancy of the Halton sequences, Mathematica Balkanica New Series, 18(1-2) (2004), 15–32.
  2. [2] DICK, J.—PILLICHSHAMMER, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, 2010.10.1017/CBO9780511761188
  3. [3] DICK, J.—NIEDERREITER, H.—PILLICHSHAMMER, F.: Weighted star discrepancy of digital nets in prime bases. In: Monte Carlo and quasi-Monte Carlo methods 2004, Springer, (2006), 77–96.10.1007/3-540-31186-6_6
  4. [4] DUSART, P.: The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2, Mathematics of Computation, 68 (1999), 411–415.10.1090/S0025-5718-99-01037-6
  5. [5] HALTON, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, 2 (1960), 84–90.10.1007/BF01386213
  6. [6] HICKERNELL, F. J.—WANG, X.: The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension, Mathematics of Computation, 71 (2002), 1641–1661.10.1090/S0025-5718-01-01377-1
  7. [7] HOFER, R.—NIEDERREITER, H.: A construction of (t, s)-sequences with finite-row generating matrices using global function fields, Finite Fields and Their Applications, 21 (2013), 97–110.10.1016/j.ffa.2012.11.004
  8. [8] JÄCKEL, P.: Monte Carlo Methods in Finance, John Wiley and Sons, 2002.
  9. [9] KRUSE, M.—STICHTENOTH, H.: Ein Analogon zum Primzahlsatz für algebraische Funktionenkörper, Manuscripta Mathematica, 69 (1990), 219–221.10.1007/BF02567920
  10. [10] MATOUŠEK, J.: Geometric Discrepancy: An Illustrated Guide, revised second printing, Springer, 2010.
  11. [11] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods, In: CBMS-NSF Regional Conference Series in Applied Mathematics. Vol. 63, SIAM, 1992.10.1137/1.9781611970081
  12. [12] NIEDERREITER, H.—XING, C.: Low-discrepancy sequences and global function fields with many rational places, Finite Fields and Their Applications, 2 (1996), 241–273.10.1006/ffta.1996.0016
  13. [13] NOVAK, E.—WOŹNIAKOWSKI, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS Tracts in Mathematics Vol. 12. European Mathematical Society (EMS), Zrich, 2010.10.4171/084
  14. [14] PAPAGEORGIOU, A.—TRAUB, J. F.: Beating Monte Carlo, RISK, 9 (June 1996), 63–65.
  15. [15] SLOAN, I. H.—WOŹNIAKOWSKI, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals, Journal of Complexity, 14 (1998), 1–33.10.1006/jcom.1997.0463
  16. [16] SLOAN, I. H.—WANG, X.—WOŹNIAKOWSKI, H.: Finite-order weights imply tractability of multivariate integration, Journal of Complexity, 20 (2004), 46–74.10.1016/j.jco.2003.11.003
  17. [17] SOBOL’, I. M.: The distribution of points in a cube and the approximate evaluation of integrals, USSR Computational Mathematics and Mathematical Physics, 7 (1967), 86–112.10.1016/0041-5553(67)90144-9
  18. [18] TEZUKA, S.: Uniform Random Numbers: Theory and Practice, The Kluwer International Series in Engineering and Computer Science Vol. 315. Kluwer Academic Publishers, Dordrecht, 1995.
  19. [19] _____ Financial applications of Monte Carlo and quasi-Monte Carlo methods, (P. Hellekalek and G. Larcher, eds.) In: Random and Quasi-Random Point Sets. Lecture Notes in Statistics, 138, Springer, (1998), 303–332.10.1007/978-1-4612-1702-2_7
  20. [20] _____ On the discrepancy of generalized Niederreiter sequences, Journal of Complexity, 29 (2013), 240–247.10.1016/j.jco.2013.02.001
  21. [21] _____ (t, e, s)-sequences in multiple bases, In: The 4-th International Conference on Uniform Distribution Theory, Ostravice, (June, 2014).
  22. [22] _____ Improvement on the discrepancy of (t,e, s)-sequences, Tatra Mountains Mathematical Publications, 59 (2014), 27–38.10.2478/tmmp-2014-0016
  23. [23] TRAUB, J. F.—WERSCHULZ, A. G.: Complexity and Information, (Lezioni Lincee). Cambridge University Press, 1998.
  24. [24] TRAUB, J. F.—WOŹNIAKOWSKI, H.: Breaking intractability, Scientific American, (January 1994), 102–107.10.1038/scientificamerican0194-102
  25. [25] WANG, X.: A constructive approach to strong tractability using quasi-Monte Carlo algorithms, Journal of Complexity, 18 (2002), 683–701.10.1006/jcom.2002.0641
  26. [26] _____ Strong tractability of multivariate integration using quasi-Monte Carlo algorithms, Mathematics of Computation, 72 (2003), 823–838.10.1090/S0025-5718-02-01440-0
  27. [27] WOŹNIAKOWSKI, H.: Average case complexity of multivariate integration, Bulletin of the American Mathematical Society, 24 (1991), 185–194.10.1090/S0273-0979-1991-15985-9
  28. [28] _____ Tractability of multivariate problems, Foundations of Computational Mathematics, Hong Kong 2008, London Math. Soc. Lecture Note Ser. Vol. 363, Cambridge University Press, Cambridge 2009, 236–276.10.1017/CBO9781139107068.009
  29. [29] XING, C.—NIEDERREITER, H.: A construction of low-discrepancy sequences using global function fields, Acta Arithmetica, 73 (1995), 87–102.10.4064/aa-73-1-87-102
DOI: https://doi.org/10.1515/udt-2016-0013 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 23 - 43
Submitted on: Nov 23, 2015
Accepted on: Apr 30, 2016
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Shu Tezuka, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.