Have a personal or library account? Click to login
On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions Cover

On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions

Open Access
|Jan 2017

References

  1. [AM] ADLER, R. L.—MARCUS, B.: Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv–84.
  2. [A1] AMOROSO, F.: Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 11-14.
  3. [A2] AMOROSO, F.: Algebraic numbers close to 1: results and methods, in: Number Theory (Tiruchirapalli, India 1996), (V. K. Murty and M. Waldschmidt, Eds.) Amer. Math. Soc., Providence, Contemp. Math. 210 (1998), pp. 305–316.
  4. [ADd1] AMOROSO, F.—DAVID, S.: Le théorème de Dobrowolski en dimension supérieure, C. R. Acad. Sci. paris Sér. I Math. 326 (1998), 1163–1166.10.1016/S0764-4442(98)80219-X
  5. [ADd2] AMOROSO, F.—DAVID, S.: Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math. 513 (1999), 145–179.10.1515/crll.1999.058
  6. [ADn] AMOROSO, F.—DELSINNE, S.: Une minoration relative explicite pour la hauteur dans une extension d’une extension abélienne, Diophantine geometry, CRM Series 4, ed. Norm., Pisa (2007), 1–24.
  7. [AD] AMOROSO, F.—DVORNICICH, R.: A lower bound for the height in abelian extensions, J. Number Theory 80 (2000), 260–272.10.1006/jnth.1999.2451
  8. [AM] AMOROSO, F.—MIGNOTTE, M.: On the distribution of the roots of polynomials, Ann. Inst. Fourier 46 (1996), 1275–1291.10.5802/aif.1548
  9. [AZ1] AMOROSO, F.—ZANNIER, U.: A lower bound for the height in Abelian extensions, J. Number Theory 80 (2000), 260–272.10.1006/jnth.1999.2451
  10. [AZ2] AMOROSO, F.—ZANNIER, U.: A uniform relative Dobrowolski’s lower bound over abelian extensions, Bull. London Math. Soc. 42 (2010), 489–498.10.1112/blms/bdq008
  11. [Al] APOSTOL, T. M.: Zeta and related functions, NIST handbook of mathematical functions, (F. W. F. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, Eds.) National Institute of Standards and Technology, Washington, DC, and Cambridge University Press, Cambridge, 2010, 601–616.
  12. [Bk] BAKER, M.: Canonical heights on elliptic curves over abelian extensions, Int.Math. Res. Not. 29 (2003), 1571–1589.10.1155/S1073792803212083
  13. [B-S] BERTIN, M. J.—DECOMPS-GUILLOUX, A.—GRANDET-HUGOT, M.—PATHIAUX-DELEFOSSE, M.—SCHREIBER, J. P.: Pisot and Salem Numbers, (with a preface by David W. Boyd.), Birkhaüser Verlag, Basel 1992.10.1007/978-3-0348-8632-1
  14. [Bn] BERTIN, M. J.: Quelques résultats nouveaux sur les nombres de Pisot et de Salem, Number Theory in Progress, Vol. I, An Intern. Conf. on Number Theory, org. Stefan Banach Int. Math. Research Center in honor of the 60th birthday of Andrzej Schinzel, Zakopane, Poland, 1997, (K. Győry, H. Iwaniec, J. Urnanowicz, W., Eds.) de Gruyter, Berlin (1999),, pp. 1–10.
  15. [BD] BESSER, A.—DENINGER, C.: p-adic Mahler measures, J. Reine Angew.Math., 517 (1999), 19–50.10.1515/crll.1999.093
  16. [Bu] BILU, Y.: Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), 465–476.10.1215/S0012-7094-97-08921-3
  17. [ByM] BLANSKY, P. E.—MONTGOMERY, H. L.: Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369.10.4064/aa-18-1-355-369
  18. [Bl] BOREL, E.: Leçons sur les Séries Divergentes, Gauthier-Villars, 2e édition, Paris, 1928.
  19. [BDM] BORWEIN, P.—DOBROWOLSKI, E.—MOSSINGHOFF, M. J.: Lehmer’s problem for polynomials with odd coefficients, Ann. of Math. 166 (2007), 347–366.10.4007/annals.2007.166.347
  20. [BS] BORWEIN, P.—STRAUB, A.: Mahler measures, short walks and log-sine integrals, Theoret. Comput. Sci. 479 (2013), 4–21.10.1016/j.tcs.2012.10.025
  21. [Bo0] BOYD, D. W.: Pisot numbers and the width of meromorphic functions, privately circulated manuscript (January 1977).
  22. [Bo1] BOYD, D. W.: Variations on a Theme of Kronecker, Canad. Math. Bull. 21 (1978), 129–133.10.4153/CMB-1978-023-x
  23. [Bo2] BOYD, D. W.: Kronecker’s Theorem and Lehmer’s Problem for polynomials in Several Variables, J. Number Th. 13 (1981), 116–121.10.1016/0022-314X(81)90033-0
  24. [Bo3] BOYD, D. W.: Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981), 453–469.10.4153/CMB-1981-069-5
  25. [Bo4] BOYD, D. W.: The maximal modulus of an algebraic integer, Math. Comp. 45 (1985), 243–249.10.1090/S0025-5718-1985-0790657-8
  26. [BM] BOYD, D. W.—MOSSINGHOFF, M. J.: Small Limit Points of Mahler’s Measure, Exp. Math. 14 (2005), 403–414.10.1080/10586458.2005.10128936
  27. [Br] BREUSCH, R.: On the distribution of the roots of a polynomial with integral coefficients, Proc. Amer. Math. Soc. 2 (1951), 939–941.10.1090/S0002-9939-1951-0045246-9
  28. [CS] CANTOR, D. C.—STRAUSS, E. G.: On a conjecture of D.H Lehmer, Acta Arith. 42 (1982/83), 97–100. Correction: ibid. 42 (3) (1983), 327.10.4064/aa-42-1-97-100
  29. [Ca] CASSELS, J.W.S.: On a problem of Schinzel and Zassenhaus, J. Math. Sciences 1 (1966), 1–8.
  30. [CV] CHERN, S.-J.—VAALER, J. D.: The distribution of values of Mahler’s measure, J. Reine Angew. Math. 540 (2001), 1–47.10.1515/crll.2001.084
  31. [C] COPSON, E. T.: Asymptotic Expansions, (Reprint of the 1965 original), in: Cambridge Tracts in Math., Vol. 55, Cambridge University Press, Cambridge, 2004.
  32. [DH] DAVID, S.—HINDRY, M.: Minoration de la hauteur de Néron-Tate sur les variétés de type C.M., J. Reine Angew. Math. 529 (2000), 1–74.10.1515/crll.2000.096
  33. [Di] DINGLE, R. B.: Asymptotic Expansions: their Derivation and Interpretation, Academic Press, London-New York, 1973.
  34. [DDs] DIXON, J. D.—DUBICKAS, A.: The values of Mahler Measures, Mathematika 51 (2004), 131–148.10.1112/S0025579300015564
  35. [Do1] DOBROWOLSKI, E.: On the Maximal Modulus of Conjugates of an Algebraic Integer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 291–292.
  36. [Do2] DOBROWOLSKI, E.: On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391–401.10.4064/aa-34-4-391-401
  37. [De] DOCHE, C.: Zhang-Zagier heights of perturbed polynomials, J. Théor. Nombres Bordeaux 13 (2001), 103–110.10.5802/jtnb.307
  38. [Ds1] DUBICKAS, A.: On a conjecture of A. Schinzel and H. Zassenhaus, Acta Arith. 63 (1993), 15–20.10.4064/aa-63-1-15-20
  39. [Ds2] DUBICKAS, A.: On algebraic numbers of small measure, Lithuanian Math. J. 35 (1995/1996), 333–342.10.1007/BF02348822
  40. [Ds3] DUBICKAS, A.: The maximal conjugate of a non-reciprocal algebraic integer, Lithuanian Math. J. 37 (2) (1997/1998), 129–133.10.1007/BF02465885
  41. [Ds4] DUBICKAS, A.: Nonreciprocal algebraic numbers of small measure, Comment. Math. Univ. Carolin. 45 (2004), 693–697.
  42. [Ds5] DUBICKAS, A.: On numbers which are Mahler measures, Monatsh. Math. 141 (2004), 119–126.10.1007/s00605-003-0010-0
  43. [E] ERDÉLYI, A.: Asymptotic Expansions, Dover Publications, New York 1956.10.21236/AD0055660
  44. [ET] ERDÖS, P.—TURÁN, P.: On the distribution of roots of polynomials, Ann. Math. 51 (1950), 105–119.10.2307/1969500
  45. [F] FLAMMANG, V.: The Mahler measure of trinomials of height 1, J. Aust.Math. Soc. 96 (2014), 231–243.10.1017/S1446788713000633
  46. [FGR] FLAMMANG, V.—GRANDCOLAS, M.—RHIN, G.: Small Salem numbers, in: Number Theory in Progress, Vol. 1, (Zakopane-Kościelisko, 1997), de Gruyter, Berlin (1999), 165–168.10.1515/9783110285581.165
  47. [FLP] L. FLATTO, L.—LAGARIAS, J. C.—POONEN, B.: The zeta function of the beta-transformation, Ergod. Th. Dynam. Sys. 14 (1994), 237–266.10.1017/S0143385700007860
  48. [GM] GALATEAU, A.—MAHÉ, V.: Some consequences of Masser’s counting Theorem on Elliptic Curves, (2015).
  49. [G] GANELIUS, T.: Sequences of analytic functions and their zeros, ArkivMath. 3 (1953), 1–50.
  50. [HS] HINDRY, M.—SILVERMAN, J.: On Lehmer’s conjecture for elliptic curves, in: Séminaire de Théorie des Nombres, Paris 1988/1989, Progress in Math. Vol. 91, Birkhäuser, Paris (1990), pp. 103–116.
  51. [Lg] LANGEVIN, M.: Calculs explicites de constantes de Lehmer, in: Groupe de Travail en Théorie Analytique et Élémentaire des Nombres, 1986/1987, Publ. Math. Orsay, Univ. Paris XI, Orsay, Vol. 88, 1988, pp. 52–68.
  52. [La] LAURENT, M.: Minoration de la hauteur de Néron-Tate, in: Séminaire de Théorie des Nombres Paris 1981/1982, Progress in Math., Vol. 38, Birkhäuser, Paris, 1983, pp. 137–152.
  53. [La2] LAURENT, M.: Sur quelques résultats récents de transcendance, Some recent results concerning transcendence, Astérisque, Journées Arithmétiques1989 (Luminy 1991/1992), 209–230.
  54. [Lw] LAWTON, W. M.: A Problem of Boyd Concerning Geometric Means of Polynomials, J. Number Theory 16 (1983), 356–362.10.1016/0022-314X(83)90063-X
  55. [Le] LEHMER, D. H.: Factorization of certain cyclotomic functions, Ann. Math. 34 (1933), 461–479.10.2307/1968172
  56. [Ln] LEWIN, L.: Polylogarithms and Associated Functions, with a foreword by A. J. Van der Poorten. North-Holland Publishing Co., New York-Amsterdam, 1981.
  57. [Lt] LOUBOUTIN, R.: Sur la mesure de Mahler d’un nombre algébrique, C. R. Acad. Sci. Paris Série I, t. 296 (1983), 707–708.
  58. [Ma] MASSER, D. W.: Counting points of small height on elliptic curves Bull. Soc. Math. France 117 (1989), 247–265.,
  59. [Mv] MATVEEV, E.M.: On the cardinality of algebraic integers, Math. Notes 49 (1991), 437–438.10.1007/BF01158227
  60. [Me] MEYER, M.: Le problème de Lehmer, méthode de Dobrowolski et lemme de Siegel “à la Bombieri-Vaaler”, Publ. Math. Univ. P. et M. Curie (Paris VI), 90, Problèmes Diophantiens, 1988/1989, No 5.
  61. [Mt0] MIGNOTTE, M.: Entiers algébriques dont les conjugués sont proches du cercle unité, Séminaire Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des Nombres, Fasc. 2, Exp. No. 39, 6 pp, Paris (1978).
  62. [Mt1] MIGNOTTE, M.: Sur un théorème de M. Langevin, Acta Arith. 54 (1989), 81–86.10.4064/aa-54-1-81-86
  63. [Mt2] MIGNOTTE, M.: Remarque sur une question relative à des fonctions conjuguées, C. R. Acad. Sci. Paris, Série I, t. 315 (1992), 907–911.
  64. [Mf] MOSSINGHOFF, M. J.: Polynomials with small Mahler measure, Math. Comp. 67 (1998), 1697–1705, S11-S14.10.1090/S0025-5718-98-01006-0
  65. [MfL] MOSSINGHOFF, M. J.: Known polynomials through degree 180, http://www.cecm.sfu.caz/~mjm/Lehmer, (1996); implemented (2001): P. Lisonek; and (2003): G. Rhin and J.-M. Sac-Epée; complete through degree 40.
  66. [MRW] MOSSINGHOFF, M. J.—RHIN, G.—WU, Q.: Minimal Mahler Measures, Experimental Math. 17 (2008), 451–458.10.1080/10586458.2008.10128872
  67. [Pe] PETSCHE, C.: A quantitative version of Bilu’s equidistribution theorem, Int. J. Number Theory 1 (2005), 281–291.10.1142/S1793042105000145
  68. [P] POINCARÉ, H.: Lȩcons de Mécanique Céleste Paris, Gauthier-Villars, t. I 1905, t. II-1 1907, t. II-2 1909, t. III 1910.
  69. [Pr] PRITSKER, I. E.: Distribution of algebraic numbers, J. Reine Agew. Math. 657 (2011), 5780.10.1515/crelle.2011.049
  70. [Rz] RATAZZI, N.: Théorème de Dobrowolski-Laurent pour les extensions abéliennes sur une courbe elliptique à multiplications complexes, Int. Math. Res. Not. 58 (2004), 3121–3152.10.1155/S1073792804140518
  71. [Ra] RAUSCH, U.: On a theorem of Dobrowolski about the product of conjugate numbers, Colloq. Math. 50 (1985), 137–142.10.4064/cm-50-1-137-142
  72. [Rd] RÉMOND, G.: Intersection de sous-groupes et de sous-variétés I., Math. Ann. 333 (2005), 525-548.10.1007/s00208-005-0673-z
  73. [Re] RÉNYI, A.: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.10.1007/BF02020331
  74. [RS] RHIN, G.—SMYTH, C. J.: On the absolute Mahler measure of polynomials having all zeros in a sector, Math. Comp. 64 (1995), 295–304.10.1090/S0025-5718-1995-1257579-6
  75. [RW] RHIN, G.—WU, Q.: On the absolute Mahler measure of polynomials having all zeros in a sector II, Math. Comp. 74 (2005), 383–388.10.1090/S0025-5718-04-01676-X
  76. [Sc1] SCHINZEL, A.: Reducibility of lacunary polynomials, Acta Arith. 16 (1969), 123–159.10.4064/aa-16-2-123-160
  77. [Sc2] SCHINZEL, A.: On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973), 385–399; Addendum: ibid. 26 (1974/75), 329–331.
  78. [Sc3] SCHINZEL, A.: On the Mahler measure of polynomials in many variables, Acta Arith. 79 (1997), 77–81.10.4064/aa-79-1-77-81
  79. [SZ] SCHINZEL, A.—ZASSENHAUS, H.: A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81–85.10.1307/mmj/1028999247
  80. [Sr] SELMER, E. S.: On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287–302.10.7146/math.scand.a-10478
  81. [Sn] SILVERMAN, J. H.: Lehmer’s Conjecture for Polynomials Satisfying a Congruence Divisibility Condition and an Analogue for Elliptic Curves, J. Théorie Nombres Bordeaux 24 (2012), 751–772.10.5802/jtnb.820
  82. [Si] SINCLAIR, C.: The distribution of Mahler’s measures of reciprocal polynomials, Int. J. Math. Math. Sci. 49–52 (2004), 2773–2786.10.1155/S0161171204312469
  83. [Sy1] SMYTH, C.: On the product of the conjugates outside the unit circle of an algebraic integer, Bull. Lond. Math. Soc. 3 (1971), 169–175.10.1112/blms/3.2.169
  84. [Sy2] SMYTH, C.: On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), 49–63.10.1017/S0004972700006894
  85. [Sy3] SMYTH, C.: The Mahler measure of algebraic numbers: A Survey, in: Number Theory and Polynomials, London Math. Soc. Lecture Note Ser. Vol. 352, Cambridge Univ. press, Cambridge, 2008, pp. 322–349.10.1017/CBO9780511721274.021
  86. [Sy4] SMYTH, C.: Topics in the Theory of Numbers, PhD Thesis, Cambridge 1972.
  87. [Sff] STEFFENSEN, J. F.: Interpolation, (1927); reprint, 2nd ed. Chelsea Publ. Co, New York 1950.
  88. [St] STEWART, C. L.: Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106 (1978), 169–176.10.24033/bsmf.1868
  89. [SB] STOER, J.—BULIRSCH, R.: , Introduction to Numerical Analysis, in: Texts in Appl. Math. Vol. 12, 2nd ed., Springer-Verlag, New York, 1993.10.1007/978-1-4757-2272-7
  90. [VG] VERGER-GAUGRY, J.-L.: Uniform distribution of the Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers, Unif. Distrib. Theory 3 (2008), 157–190.
  91. [V] VOUTIER, P. M.: An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), 81–95.10.4064/aa-74-1-81-95
  92. [W0] WALDSCHMIDT, M.: Sur le produit des conjugués extérieurs au cercle, L’Enseign. Math. 26 (1980), 201–209.
  93. [W1] WALDSCHMIDT, M.: Auxiliary functions in transcendental number theory, SASTRA Ramanujan Lectures, Ramanujan J. 20 no. 3, (2009), 341–373.10.1007/s11139-009-9204-y
  94. [W2] WALDSCHMIDT, M.: Diophantine Approximation on Luinear Algebraic Group: Transcendence Properties of the Exponential Function in Several Variables, Grund. Math. Wiss., Vol. 326, Springer-Verlag, Berlin, 2000.
  95. [Wu] WU, Q.: The smallest Perron numbers, Math. Comp. 79 (2010), 2387–2394.10.1090/S0025-5718-10-02345-8
  96. [Za] ZAGIER, D.: Algebraic numbers close to 0 and 1, Math. Comp. 61 (1993), 485–491.10.1090/S0025-5718-1993-1197513-9
  97. [Zi] ZAÏMI, T.: Sur les K-nombres de Pisot de petite mesure, Acta Arith. 77 (1996), 103–131.10.4064/aa-77-2-103-131
DOI: https://doi.org/10.1515/udt-2016-0006 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 79 - 139
Submitted on: Mar 20, 2015
Accepted on: Sep 14, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Jean-Louis Verger-Gaugry, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.