Have a personal or library account? Click to login
On Strong Normality Cover

References

  1. [1] BOREL, E.: Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271.10.1007/BF03019651
  2. [2] BUGEAUD, Y.: Distribution modulo one and Diophantine approximation. Cambridge Tracts in Math. Vol. 193. Cambridge University Press, Cambridge, 2012.10.1017/CBO9781139017732
  3. [3] CHAMPERNOWNE, D.G.: The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254–260.10.1112/jlms/s1-8.4.254
  4. [4] COPELAND, A. H.—ERDŐS, P.: Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857–860.10.1090/S0002-9904-1946-08657-7
  5. [5] DAVENPORT, H.—ERDŐS, P.: Note on normal decimals, Canad. J. Math. 4 (1952), 58–63.10.4153/CJM-1952-005-3
  6. [6] DE KONINCK, J. M.—KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers, Funct. Approx. Comment. Math. 45 (2011), no. 2, 231–253.10.7169/facm/1323705815
  7. [7] DE KONINCK, J. M.—KÁTAI, I.: On a problem on normal numbers raised by Igor Shparlinski, Bull. Aust. Math. Soc. 84 (2011), 337–349.10.1017/S0004972711002322
  8. [8] DE KONINCK, J. M.—KÁTAI, I.: Normal numbers created from primes and polynomials, Unif. Distrib. Theory 7 (2012), no. 2, 1–20.
  9. [9] DE KONINCK, J. M.—KÁTAI, I.: Some new methods for constructing normal numbers, Ann. Sci. Math. Québec 36 (2012), no. 2, 349–359.
  10. [10] DE KONINCK, J. M.—KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers II, Funct. Approx. Comment. Math. 49 (2013), no. 1, 7–27.10.7169/facm/2013.49.1.1
  11. [11] DE KONINCK, J. M.—KÁTAI, I.: Normal numbers generated using the smallest prime factor function, Ann. Sci. Math. Québec 38 (2014), no. 2, 133–144.
  12. [12] DE KONINCK, J. M.—LUCA, F.: Analytic Number Theory: Exploring the Anatomy of Integers, Grad. Stud. Math. Vol. 134, Amer. Math. Soc., Providence, RI. 2012.
  13. [13] HALÁSZ, G.: On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211–233.
  14. [14] KÁTAI, I.: A remark on a paper of K. Ramachandra, in: Number Theory (Ootacamund, 1984), Lecture Notes in Math. Vol. 1122, Springer, Berlin, 1985, pp. 147–152.
  15. [15] KUIPERS, L.—NIEDERREITER, H.: Uniform Distribution of Sequences, John Wiley & Sons, New York, 1974.
DOI: https://doi.org/10.1515/udt-2016-0005 | Journal eISSN: 2309-5377 | Journal ISSN: 1336-913X
Language: English
Page range: 59 - 78
Submitted on: Feb 26, 2015
Accepted on: Sep 7, 2015
Published on: Jan 13, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Jean-Marie De Koninck, Imre Kátai, Bui Minh Phong, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.