Have a personal or library account? Click to login
Real-Time Video Surveillance System for Traffic Management with Background Subtraction Using Codebook Model and Occlusion Handling Cover

Real-Time Video Surveillance System for Traffic Management with Background Subtraction Using Codebook Model and Occlusion Handling

Open Access
|Nov 2017

References

  1. 1. Aslani, S. and Mahdavi-Nasab, H. (2013) Optical flow based moving object detection and tracking for traffic surveillance. International Journal of Electrical, Electronics, Communication, Energy Science and Engineering, 7, 789-793.
  2. 2. Atiq, H. M., Farooq, U., Ibrahim, R., Khalid, O. and Amar, M. (2010) Vehicle detection and shape recognition using optical sensors: a review. In Machine Learning and Computing (ICMLC), 2010 Second International Conference on, IEEE, pp. 223-227.10.1109/ICMLC.2010.73
  3. 3. Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, pp. 679-698.10.1109/TPAMI.1986.4767851
  4. 4. Chen, C. and Liu, S. (2012) Detection and segmentation of occluded vehicles based on skeleton features. In Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 2012 Second International Conference on (pp. 1055-1059). IEEE.10.1109/IMCCC.2012.249
  5. 5. Coifman, B., Beymer, D., McLauchlan, P. and Malik, J. (1998) A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies, 6, 271-288.10.1016/S0968-090X(98)00019-9
  6. 6. Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20, 273-297. 10.1007/BF00994018
  7. 7. Dalal, N. and Triggs, B. (2005) Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (pp. 886- 893). IEEE volume 1.
  8. 8. Fu, H., Ma, H., Liu, Y. and Lu, D. (2016) A vehicle classification system based on hierarchical multi-svms in crowded traffic scenes. Neurocomputing, 211, 182-190.10.1016/j.neucom.2015.12.134
  9. 9. Guerrero-Gomez-Olmedo, R., Lopez-Sastre, R.J., Maldonado-Bascon, S. and Fernandez-Caballero, A. (2013) Vehicle tracking by simultaneous detection and viewpoint estimation. In IWINAC 2013, Part II, LNCS 7931 (pp. 306-316).10.1007/978-3-642-38622-0_32
  10. 10. Horprasert, T., Harwood, D. and Davis, L. S. (1999) A statistical approach for real-time robust background subtraction and shadow detection. In IEEE ICCV (pp. 1-19). Volume 99.
  11. 11. Hossen, M. K. and Tuli, S. H. (2016) A surveillance system based on motion detection and motion estimation using optical flow. In Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference on (pp. 646-651). IEEE.10.1109/ICIEV.2016.7760081
  12. 12. Huang, C.-L. and Liao, W.-C. (2004) A vision-based vehicle identification system. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on (pp. 364-367). IEEE volume 4.
  13. 13. Huang, D.-Y., Chen, C.-H., Hu, W.-C., Yi, S.-C., Lin, Y.-F. et al. (2012) Feature-based vehicle flow analysis and measurement for a real-time traffic surveillance system. Journal of Information Hiding and Multimedia Signal Processing, 3, 279-294.
  14. 14. Ji, X., Wei, Z. and Feng, Y. (2006) Effective vehicle detection technique for traffic surveillance systems. Journal of Visual Communication and Image Representation, 7, 647-658.10.1016/j.jvcir.2005.07.004
  15. 15. Johansson, B., Wiklund, J., Forssen, P.-E. and Granlund, G. (2009) Combining shadow detection and simulation for estimation of vehicle size and position. Pattern Recognition Letters, 30, 751-759.10.1016/j.patrec.2009.03.005
  16. 16. Kanhere, N. K. and Birchfield, S. T. (2008) Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features. IEEE Transactions on Intelligent Transportation Systems, 9, 148-160.10.1109/TITS.2007.911357
  17. 17. Kastrinaki, V., Zervakis, M. and Kalaitzakis, K. (2003) A survey of video processing techniques for traffic applications. Image and Vision Computing, 21, 359-381.10.1016/S0262-8856(03)00004-0
  18. 18. Kim, K., Chalidabhongse, T. H., Harwood, D. and Davis, L. (2005) Real-time foregroundbackground segmentation using codebook model. Real-Time Imaging, 11, 172-185.10.1016/j.rti.2004.12.004
  19. 19. Lei, M., Leoch, D., Gouton, P. and Madani, K. (2008) A video-based real-time vehicle counting system using adaptive background method. In Signal Image Technology and Internet Based Systems, 2008. SITIS'08. IEEE International Conference on (pp. 523-528). IEEE.10.1109/SITIS.2008.91
  20. 20. Mandellos, N. A., Keramitsoglou, I. and Kiranoudis, C. T. (2011) A background subtraction algorithm for detecting and tracking vehicles. Expert Systems with Applications, 38, 1619-1631.10.1016/j.eswa.2010.07.083
  21. 21. Mohana, H., Ashwathakumar, M. and Shivakumar, G. (2009) Vehicle detection and counting by using real time traffic ux through differential technique and performance evaluation. In Advanced Computer Control, 2009. ICACC'09. International Conference on (pp. 791-795). IEEE.10.1109/ICACC.2009.149
  22. 22. Nicolas, H. and Brulin, M. (2014) Video traffic analysis using scene and vehicle models. Signal Processing: Image Communication, 29, 807-830.10.1016/j.image.2014.06.010
  23. 23. Pornpanomchai, C., Liamsanguan, T., and Vannakosit, V. (2008) Vehicle detection and counting from a video frame. In Wavelet Analysis and Pattern Recognition, 2008. ICWAPR'08. International Conference on (pp. 356-361). IEEE volume 1.10.1109/ICWAPR.2008.4635804
  24. 24. Shu, G., Dehghan, A., Oreifej, O., Hand, E. and Shah, M. (2012) Part-based multiple-person tracking with partial occlusion handling. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 1815-1821). IEEE.
  25. 25. Song, X. and Nevatia, R. (2007) Detection and tracking of moving vehicles in crowded scenes. In Motion and Video Computing, 2007. WMVC'07. IEEE Workshop on (pp. 4{4). IEEE.10.1109/WMVC.2007.13
  26. 26. Stauffer, C. and Grimson, W. E. L. (1999) Adaptive background mixture models for real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. (pp. 246-252). IEEE volume 2.
  27. 27. Tang, S., Andriluka, M. and Schiele, B. (2014) Detection and tracking of occluded people. International Journal of Computer Vision, 110, 58-69.10.1007/s11263-013-0664-6
  28. 28. Tian, B., Tang, M. and Wang, F.-Y. (2015) Vehicle detection grammars with partial occlusion handling for traffic surveillance. Transportation Research Part C: Emerging Technologies, 56, 80-93.10.1016/j.trc.2015.02.020
  29. 29. Wang, C.-C. R. and Lien, J.-J. J. (2008) Automatic vehicle detection using local features a statistical approach. IEEE Transactions on Intelligent Transportation Systems, 9, 83-96.10.1109/TITS.2007.908572
  30. 30. Wen, X., Shao, L., Xue, Y. and Fang, W. (2015) A rapid learning algorithm for vehicle classification. Information Sciences, 295, 395-406.10.1016/j.ins.2014.10.040
  31. 31. Xia, Y., Shi, X., Song, G., Geng, Q. and Liu, Y. (2016) Towards improving quality of video-based vehicle counting method for traffic flow estimation. Signal Processing, 120, 672-681.10.1016/j.sigpro.2014.10.035
  32. 32. Yu, M., Jiang, G. and Yu, B. (2000) An integrative method for video based traffic parameter extraction in its. In Circuits and Systems, 2000. IEEE APCCAS 2000. The 2000 IEEE Asia Pacific Conference on (pp. 136-139). IEEE.
  33. 33. Zhou, Y. and Cheung, N. M. (2016) Vehicle Classification using Transferable Deep Neural Network Features. arXiv, 2016, vol. 1601.
DOI: https://doi.org/10.1515/ttj-2017-0027 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 297 - 306
Published on: Nov 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Zakaria Moutakki, Imad Mohamed Ouloul, Karim Afdel, Abdellah Amghar, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.