Have a personal or library account? Click to login
Groupage Cargo Transportation Model Cover

References

  1. 1. Coello Coello, C.A., and Lamont, G.B. (2004) Applications of Multi-Objective Evolutionary Algorithms. Vol. 1: Advances in Natural Computation. New Jersey-London-Singapore-Berlin-Shanghai-Hong Kong-Taipei-Chennai: World Scientific, xxvii+761 p.10.1142/9789812567796_0001
  2. 2. Courant, R. (1989) Partial Differential Equations. New York-London: Wiley VCH, xxii+830 p.
  3. 3. Davenport, H. (2008) The Higher Arithmetic: An Introduction to the Theory of Numbers. Cambridge, UK: Cambridge University Press, ix+239.10.1017/CBO9780511818097
  4. 4. Deb, K. (2001) Multi-objective Optimization Using Evolutionary Algorithms. Chichester-New York-Weinheim-Brisbane-Singapore-Toronto: John Wiley & Sons, xix+497 p.
  5. 5. Gembicki, F.W. (1973) Vector Optimization for Control with Performance and Parameter Sensitivity Indices. Ph.D. Thesis, Department of System Engineering, Case Western Reserve University, Cleveland, USA, 204 p.
  6. 6. Gembicki, F.W., and Haimes, Y.Y. (1975) Approach to Performance and Sensitivity Multiobjective Optimization: The Goal Attainment Method. IEEE Transactions on Automatic Control, 29(6), pp. 769-771.10.1109/TAC.1975.1101105
  7. 7. Goncharsky, A.V., Leonov, A.S., and Yagola, A.G. (1973) A generalized residual principle. Computational Mathematics and Mathematical Physics, 13(2), pp. 294-302.
  8. 8. Kang, M.H., Choi, H.R., Kim, H.S., and Park, B.J. (2012) Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3), pp. 585-604.10.1007/s10489-011-0278-z
  9. 9. Liotta, G., Stecca, G., and Kaihara, T. (2015) Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, pp. 351-365.10.1016/j.ijpe.2014.12.016
  10. 10. Masane-Ose, J. (2014) Competitive position of the Baltic States Ports. Riga, Latvia: KPMG International Cooperative. (Transport & Logistics, pp. 1-12; https://www.kpmg.lv)
  11. 11. Medvedeva, A.A. (2014) Opportunities to reduce aggregate expenditures by means of creating a strategic alliance by maritime cargo transportation. M.Sc. Thesis in Transport and Logistics. Riga, Latvia: Transport and Telecommunication Institute, Faculty of Transport and Logistics, 62 p.
  12. 12. Nikolaeva, L.L., and Tsymbal, N.N. (2005) Maritime Transportation. Odessa, Ukraine: FENIX Press, 424 p.
  13. 13. Song, D.-W., and Panayides, Ph.M. (2012) Maritime Logistics: A Complete Guide to Effective Shipping and Port Management. London-Philadelphia-New Delhi: Kogan Page, 344 p.
  14. 14. Steuer, R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. New York, USA: John Wiley & Sons, xx+546 p.
  15. 15. Swiss Re Economic Research & Consulting. (2001-2015) World Insurance Reports No 6/2001; No 6/2002; No 8/2003; No 3/2004; No 2/2005; No 5/2006; No 4/2007; No 3/2008; No 3/2009; No 2/2010; No 2/2011; No 3/2012; No 3/2013; No 3/2014; No 4/2015. Zurich, Switzerland: Swiss Re, sigma. http://www.swissre.com/sigma/
  16. 16. Tikhonov, A.N. (1966) Ill-posed optimal planning problems. Journal of Computational Mathematics and Mathematical Physics, 6(1), pp. 81-89.
  17. 17. Tikhonov, A.N., Karmanov, V.G., and Rudneva, T.L. (1969) On the stability of linear programming problems. In: Numerical Methods and Programming, XII. Moscow: Lomonosov Moscow State University Press, pp. 3-9.
  18. 18. Tikhonov, A.N., and Arsenin, V.Y. (1977) Solutions of Ill-Posed Problems. New York, USA: Halsted Press, xiii+258 p.
  19. 19. Tuy, H., Chinchuluun, A., Pardalos, P.M., Migdalas, A., and Pitsoulis, L. (2008) Pareto Optimality, Game Theory and Equilibria. New York: Springer, 871 p.10.1007/978-0-387-77247-9
  20. 20. Wakeman, Th., and Bomba, M. (2010) Maritime Freight Transportation, National Economic Recovery, and Global Sustainability: Coordinating a Strategic Plan. Transportation Research Board of the National Academies of Sciences, Engineering, Medicine. TR News: Globalization and Transportation, 269, pp. 14-20.
  21. 21. Weil, A. (2013) Basic Number Theory. Berlin-Heidelberg: Springer-Verlag, xviii+316 p.
DOI: https://doi.org/10.1515/ttj-2016-0007 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 60 - 72
Published on: Feb 22, 2016
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Ruslans Aleksejevs, Raufs Guseinovs, Alexander N. Medvedev, Sharif E. Guseynov, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.