Have a personal or library account? Click to login
Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture Cover

Cyclic Fracture Toughness of Railway Axle and Mechanisms of its Fatigue Fracture

Open Access
|Apr 2015

References

  1. 1. ASTM E647-08e1. (2008) Standard Test Method for Measurement of Fatigue Crack Growth Rates.
  2. 2. Carlson, R. L., Kardomateas, G. A. (1994) Effects of compressive load excursions on fatigue crack growth. International Journal of Fatigue, 16(2), 141-146. DOI: 10.1016/0142-1123(94)90104-X10.1016/0142-1123(94)90104-X
  3. 3. Černý, I., Linhart, V. (2013) Effects of different microstructure on resistance of EA4T railway axle steel of equal strength to fatigue crack growth. Key Engineering Materials, 592-593, 631-634. DOI:10.4028/www.scientific.net/KEM.592-593.63110.4028/www.scientific.net/KEM.592-593.631
  4. 4. Elwazri, A. M., Wanjara, P., Yue, S. (2005) The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Materials Science and Engineering: A, 404 (1-2), 91-98. DOI:10.1016/j.msea.2005.05.05110.1016/j.msea.2005.05.051
  5. 5. GOST 31334-2007. Osi dlya podvizhnogo sostava zheleznyh dorog kolei 1520 mm. Tehnicheskie usloviya [Axles for rolling stock of 1520 mm gauge railways. Specifications]. (in Russian).
  6. 6. Larijani, N., Brouzoulis, J., Schilke, M., Ekh, M. (2014) The effect of anisotropy on crack propagation in pearlitic rail steel. Wear, 314(1-2), 57-68. DOI:10.1016/j.wear.2013.11.03410.1016/j.wear.2013.11.034
  7. 7. Levchenko, G. V., Dyomina, E. G., Nefedyeva, E. E., Buga, I. D., Antonov, Yu. G., Medinskiy, G. A. (2010) Effect of billet strained condition on microstructure homogeneity of railway axles. Metallurgical and Mining Industry, 2(3), 207-214.
  8. 8. Maruschak, P. O., Baran, D. Ya., Sorochak, A. P., Bishchak, R. T., Yasnii, V. P. (2012) Cyclic crack resistance and micromechanisms of fracture of steel 25Kh1M1F. Strength of Materials, 44(4), 410-418. DOI:10.1007/s11223-012-9395-010.1007/s11223-012-9395-0
  9. 9. Maruschak, P. O., Sorochak, A. P., Menou, A., Maruschak, O. V. (2013) Regularities in macro- and micromechanisms of fatigue crack growth in a bimetal of continuous caster rolls. Case Studies in Engineering Failure Analysis, 1(2), 165-170. DOI:10.1016/j.csefa.2013.05.00310.1016/j.csefa.2013.05.003
  10. 10. Panin, V. E., Elsukova, T. F., Popkova, Yu. F. (2011) Stages of multiscale fatigue cracking as a nonlinear rotational autowave process. Physical Mesomechanics, 14(3-4), 112-123. DOI:10.1016/j.physme.2011.08.003
  11. 11. Plekhov, O. A., Saintier, N., Palin-Luc, T., Uvarov, S. V., Naimark, O. B. (2007) Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading. Materials Science and Engineering: A, 462(1-2), 367-369. DOI:10.1016/j.msea.2006.02.46210.1016/j.msea.2006.02.462
  12. 12. Shanyavskiy, A. A. (2013) Mechanisms and modeling of subsurface fatigue cracking in metals. Engineering Fracture Mechanics, 110, 350-363. DOI:10.1016/j.engfracmech.2013.05.01310.1016/j.engfracmech.2013.05.013
  13. 13. Shaniavski, A. A., Artamonov, M. A. (2004) Fractal dimensions for fatigue fracture surfaces performed on micro- and meso-scale levels. International Journal of Fracture, 128(1-4), 309-314. DOI:10.1023/B:FRAC.0000040994.96074.bf10.1023/B:FRAC.0000040994.96074.bf
  14. 14. Shanyavskiy, A. A., Burchenkova, L. M. (2013) Mechanism for fatigue striations as formed under variable negative R-ratio in Al-based structural alloys. International Journal of Fatigue, 50, 47-56. DOI:10.1016/j.ijfatigue.2012.04.00610.1016/j.ijfatigue.2012.04.006
  15. 15. Silva, F. S. (2005) The importance of compressive stresses on fatigue crack propagation rate. International Journal of Fatigue, 27(10-12), 1441-1452. DOI:10.1016/j.ijfatigue.2005.07.00310.1016/j.ijfatigue.2005.07.003
  16. 16. Varfolomeev, I., Luke, M., Burdack, M. (2011) Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T. Engineering Fracture Mechanics, 78(5), 742-753. DOI:10.1016/j.engfracmech.2010.11.01110.1016/j.engfracmech.2010.11.011
  17. 17. Wawszczak, J., Kurzydłowski, K. J. (2009) Grain size correlation with the geometry of fracture surface profiles in polycrystalline iron by a continuous wavelet transformation method. Materials Characterization, 60(10), 1180-1184. DOI:10.1016/j.matchar.2009.02.01410.1016/j.matchar.2009.02.014
  18. 18. Xiong, Y., Katsuta, J., Kawano, K., Sakiyama, T. (2008) Examination of fatigue crack driving force parameter. Fatigue & Fracture of Engineering Materials & Structures, 31(9), 754-765. DOI:10.1111/j.1460-2695.2008.01261.x10.1111/j.1460-2695.2008.01261.x
  19. 19. Yasniy, O., Lapusta, Y., Pyndus, Y., Sorochak, A., Yasniy, V. (2013) Assessment of lifetime of railway axle. International Journal of Fatigue, 50, 40-46. DOI:10.1016/j.ijfatigue.2012.04.00810.1016/j.ijfatigue.2012.04.008
  20. 20. Zhang, J., He, X. D., Sha, Y., Du, S. Y. (2010) The compressive stress effect on fatigue crack growth under tension-compression loading. International Journal of Fatigue, 32(2), 361-367. DOI:10.1016/j.ijfatigue.2009.07.00810.1016/j.ijfatigue.2009.07.008
DOI: https://doi.org/10.1515/ttj-2015-0015 | Journal eISSN: 1407-6179 | Journal ISSN: 1407-6160
Language: English
Page range: 158 - 166
Published on: Apr 18, 2015
Published by: Transport and Telecommunication Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Andriy Sorochak, Pavlo Maruschak, Olegas Prentkovskis, published by Transport and Telecommunication Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.