References
- 1. ASTM E647-08e1. (2008) Standard Test Method for Measurement of Fatigue Crack Growth Rates.
- 2. Carlson, R. L., Kardomateas, G. A. (1994) Effects of compressive load excursions on fatigue crack growth. International Journal of Fatigue, 16(2), 141-146. DOI: 10.1016/0142-1123(94)90104-X10.1016/0142-1123(94)90104-X
- 3. Černý, I., Linhart, V. (2013) Effects of different microstructure on resistance of EA4T railway axle steel of equal strength to fatigue crack growth. Key Engineering Materials, 592-593, 631-634. DOI:10.4028/www.scientific.net/KEM.592-593.63110.4028/www.scientific.net/KEM.592-593.631
- 4. Elwazri, A. M., Wanjara, P., Yue, S. (2005) The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Materials Science and Engineering: A, 404 (1-2), 91-98. DOI:10.1016/j.msea.2005.05.05110.1016/j.msea.2005.05.051
- 5. GOST 31334-2007. Osi dlya podvizhnogo sostava zheleznyh dorog kolei 1520 mm. Tehnicheskie usloviya [Axles for rolling stock of 1520 mm gauge railways. Specifications]. (in Russian).
- 6. Larijani, N., Brouzoulis, J., Schilke, M., Ekh, M. (2014) The effect of anisotropy on crack propagation in pearlitic rail steel. Wear, 314(1-2), 57-68. DOI:10.1016/j.wear.2013.11.03410.1016/j.wear.2013.11.034
- 7. Levchenko, G. V., Dyomina, E. G., Nefedyeva, E. E., Buga, I. D., Antonov, Yu. G., Medinskiy, G. A. (2010) Effect of billet strained condition on microstructure homogeneity of railway axles. Metallurgical and Mining Industry, 2(3), 207-214.
- 8. Maruschak, P. O., Baran, D. Ya., Sorochak, A. P., Bishchak, R. T., Yasnii, V. P. (2012) Cyclic crack resistance and micromechanisms of fracture of steel 25Kh1M1F. Strength of Materials, 44(4), 410-418. DOI:10.1007/s11223-012-9395-010.1007/s11223-012-9395-0
- 9. Maruschak, P. O., Sorochak, A. P., Menou, A., Maruschak, O. V. (2013) Regularities in macro- and micromechanisms of fatigue crack growth in a bimetal of continuous caster rolls. Case Studies in Engineering Failure Analysis, 1(2), 165-170. DOI:10.1016/j.csefa.2013.05.00310.1016/j.csefa.2013.05.003
- 10. Panin, V. E., Elsukova, T. F., Popkova, Yu. F. (2011) Stages of multiscale fatigue cracking as a nonlinear rotational autowave process. Physical Mesomechanics, 14(3-4), 112-123. DOI:10.1016/j.physme.2011.08.003
- 11. Plekhov, O. A., Saintier, N., Palin-Luc, T., Uvarov, S. V., Naimark, O. B. (2007) Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading. Materials Science and Engineering: A, 462(1-2), 367-369. DOI:10.1016/j.msea.2006.02.46210.1016/j.msea.2006.02.462
- 12. Shanyavskiy, A. A. (2013) Mechanisms and modeling of subsurface fatigue cracking in metals. Engineering Fracture Mechanics, 110, 350-363. DOI:10.1016/j.engfracmech.2013.05.01310.1016/j.engfracmech.2013.05.013
- 13. Shaniavski, A. A., Artamonov, M. A. (2004) Fractal dimensions for fatigue fracture surfaces performed on micro- and meso-scale levels. International Journal of Fracture, 128(1-4), 309-314. DOI:10.1023/B:FRAC.0000040994.96074.bf10.1023/B:FRAC.0000040994.96074.bf
- 14. Shanyavskiy, A. A., Burchenkova, L. M. (2013) Mechanism for fatigue striations as formed under variable negative R-ratio in Al-based structural alloys. International Journal of Fatigue, 50, 47-56. DOI:10.1016/j.ijfatigue.2012.04.00610.1016/j.ijfatigue.2012.04.006
- 15. Silva, F. S. (2005) The importance of compressive stresses on fatigue crack propagation rate. International Journal of Fatigue, 27(10-12), 1441-1452. DOI:10.1016/j.ijfatigue.2005.07.00310.1016/j.ijfatigue.2005.07.003
- 16. Varfolomeev, I., Luke, M., Burdack, M. (2011) Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T. Engineering Fracture Mechanics, 78(5), 742-753. DOI:10.1016/j.engfracmech.2010.11.01110.1016/j.engfracmech.2010.11.011
- 17. Wawszczak, J., Kurzydłowski, K. J. (2009) Grain size correlation with the geometry of fracture surface profiles in polycrystalline iron by a continuous wavelet transformation method. Materials Characterization, 60(10), 1180-1184. DOI:10.1016/j.matchar.2009.02.01410.1016/j.matchar.2009.02.014
- 18. Xiong, Y., Katsuta, J., Kawano, K., Sakiyama, T. (2008) Examination of fatigue crack driving force parameter. Fatigue & Fracture of Engineering Materials & Structures, 31(9), 754-765. DOI:10.1111/j.1460-2695.2008.01261.x10.1111/j.1460-2695.2008.01261.x
- 19. Yasniy, O., Lapusta, Y., Pyndus, Y., Sorochak, A., Yasniy, V. (2013) Assessment of lifetime of railway axle. International Journal of Fatigue, 50, 40-46. DOI:10.1016/j.ijfatigue.2012.04.00810.1016/j.ijfatigue.2012.04.008
- 20. Zhang, J., He, X. D., Sha, Y., Du, S. Y. (2010) The compressive stress effect on fatigue crack growth under tension-compression loading. International Journal of Fatigue, 32(2), 361-367. DOI:10.1016/j.ijfatigue.2009.07.00810.1016/j.ijfatigue.2009.07.008