Have a personal or library account? Click to login
Key Exchange Over Particular Algebraic Closure Ring Cover
Open Access
|Mar 2018

References

  1. [1] CHARKANI,M. E.-SAHMOUDI,M.: Sextic extension with cubic subfield, JP J.Algebra, Number Theory Appl. 34 (2014), 139-150.
  2. [2] CHILLALI, A.-SAHMOUDI, M.: Cryptography over sextic extension with cubic subfield, World Academy Sci. Engrg. Technol. 9 (2015), 246-249.
  3. [3] COHEN, H.: A Course in Computational Algebraic Number theory. GTM Springer-Verlag, Berlin, 1996.
  4. [4] DIFFIE, W.-HELLMAN,M. E.: New directions in cryptography, IEEE Trans. Inf. Theory 22 (1976), 644-654.10.1109/TIT.1976.1055638
  5. [5] MENEZES, A. J.: Elliptic Curve Public key Cryptosystems. Foreword by Neal Koblitz. In: Kluwer Internat. Ser. Engrg. Comput. Sci., Vol. 234, Kluwer Acad. Publ., Boston, MA, 1993.
  6. [6] RIVEST, R. L.-ADLEMAN, L.-DERTOUZOS, M. L.: On data banks and privacy homomorphisms. Foundations of Secure Computation 11, (1978) no. 4, 169-180.
  7. [7] SAHMOUDI, M.: Explicit integral basis for a family of sextic field, Gulf J. Math. 4 (2016), 217-222.10.56947/gjom.v4i4.280
  8. [8] MILLER, V. S.: Use of elliptic curves in cryptography. In: Advances in Cryptology- -CRYPTO ’85 (H. C. Williams, ed.), Proc. Conf., Santa Barbara/Calif. 1985, Lect. Notes Comput. Sci., Vol. 218, Springer, Berlin, 1986, pp. 417-426.
DOI: https://doi.org/10.1515/tmmp-2017-0024 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 151 - 162
Submitted on: Mar 25, 2017
Published on: Mar 23, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Mohammed Sahmoudi, Abdelhakim Chillali, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.