Have a personal or library account? Click to login
On the Families of Stable Multivariate Transformations of Large Order and Their Cryptographical Applications Cover

On the Families of Stable Multivariate Transformations of Large Order and Their Cryptographical Applications

By: Vasyl Ustimenko  
Open Access
|Mar 2018

References

  1. [1] DING, J.-GOWER, V.-SCHMIDT, D. S.: Multivariate Public Key Cryptosystems. In: Adv. Inform. Sec. Vol. 25, Springer-Verlag, New York, 2006.
  2. [2] COSSIDENTE, A.-DE RESMINI, M. J.: Remarks on Singer cyclic groups and their normalizers, Des. Codes Cryptogr. 32 (2004), no. 1-3, 97-102, 10.1023/B:DESI.0000029214.50635.17
  3. [3] KANTOR, W.: Linear groups containing a Singer cycle, J. Algebra 62 (1980), no. 1, 232-234.10.1016/0021-8693(80)90214-8
  4. [4] BABAI, L.: Graph isomorphism in quasipolinomial time, arXive: 1512 03547v1 [cs. DS], December 11, 2015.
  5. [5] KIPNIS, A.-SHAMIR, A.: Cryptanalisis of the Oil and Vinegar Signature Scheme, Adv. in Cryptology-Crypto ’96, Lect. Notes in Comput. Sci. Vol. 1462, 1996, pp. 257-266.10.1007/BFb0055733
  6. [6] PATARIN, J.-GOUBIN, L.: Trapdoor one-way permutations and multivariate polynominals, ICICS 1997, pp. 356-368.10.1007/BFb0028491
  7. [7] Asymmetric cryptography with S-Boxes, ICICS 1997, pp. 369-380.
  8. [8] PATARIN, J.: Asymmetric cryptography with a hidden monomial, and a candidate algorithm for 64 bits asymmetric signatures. In: Advances in cryptologyCRYPTO’96, Santa Barbara, CA), Lect. Notes in Comput. Sci. Vol. 1109, Springer-Verlag, Berlin, 1996, pp. 45-60. 10.1007/3-540-68697-5_4
  9. [9] GOUBIN, L.-PATARIN, J.-YANG, B.-Y.: Multivariate Cryptography. Encyclopedia of Cryptography and Security (2nd ed.), Springer-Verlag Berlin 2011, pp. 824-828.10.1007/978-1-4419-5906-5_421
  10. [10] PORRAS, J.-BAENA, J.-DING, J.: New candidates for multivariate trapdoor functions, Rev. Colombiana Mat. 49 (2015), no. 1, 57-76.10.15446/recolma.v49n1.54163
  11. [11] USTIMENKO, V. A.: Explicit constructions of extremal graphs and new multivariate cryptosystems, In: Proceedings of The Central European Conference, 2014, Budapest”, Studia Sci. Math. Hungar. 52 (2015), 185-204.10.1556/012.2015.52.2.1312
  12. [12] On multivariate cryptosystems based on computable maps with invertible decompositions, Ann. Univ. Mariae Curie-Sk_lodowska Sect. AI-Inform. 14 (2014), 7-18.10.2478/umcsinfo-2014-0001
  13. [13] On Shubert cells in grassmanians and new algorithm of multivariatecryptography, Tr. Inst. Mat. 23 (2015), no. 2, 137-148
  14. [14] On Linguistic Dynamical Systems, Graphs of Large Girth and Cryptography, Zap. Nauchn. Semin. POMI 326, (2005), 214-234; translated in J. Math. Sci., 140 (2007), no. 3, 461-471.
  15. [15] USTIMENKO, V.-WROBLEWSKA, A.: On the key exchange with nonlinear polynomial maps of stable degree, Ann. Univ. Mariae Curie-Skodowska Sect. AI-Inform. 13 (2013), no. 1, 63-80.10.2478/v10065-012-0047-6
  16. [16] WROBLEWSKA, A.: On some properties of graph based public keys, Albanian J. Math. 2 (2008), no. 3, 229-234.
  17. [17] USTIMENKO, V.: Coordinatisation of trees and their quotients. In: the ”Voronoj’s Impact on Modern Science”, Vol 2, 1998, Kiev, Institute of Mathematics pp. 125-152.
  18. [18] LAZEBNIK, F.-USTIMENKO, V. A.: Some algebraic constractions of dense graphs of large girth and of large size. In: Expanding graphs, Princeton, NJ, 1992, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 10, 1993, Amer. Math. Soc., Providence, RI, pp. 75-93.10.1090/dimacs/010/07
  19. [19] LAZEBNIK, F.-USTIMENKO, V. A. -WOLDAR, A. J.: New series of dense graphs of high girth, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 73-79.10.1090/S0273-0979-1995-00569-0
  20. [20] USTIMENKO, V.- ROMANCZUK, U.: On dynamical systems of large girth or cycle indicator and their applications to multivariate cryptography. In: Artificial Intelligence, Evolutionary Computing and Metaheuristics, In the footsteps of Alan Turing Series: Studies in Computational Intelligence, Vol. 427, Springer-Verlag, 2013, pp. 257-285.10.1007/978-3-642-29694-9_10
  21. [21] USTIMENKO, V.-WROBLEWSKA, A.: Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography, Ann. Univ. Mariae Curie-Skodowska Sect. AI-Inform. 12 (2012), no. 3, 65-74.10.2478/v10065-012-0030-2
  22. [22] KLISOWSKI, M.: Zwi¸eszenie Bezpiecze´nstwa Kryptograficznych Algorytm´owielu Zmiennych Bazuj¸acych na Algebraicznej Teorii Graf´ow. PhD Thesis, Cz¸estochowa, 2014.
  23. [23] KLISOWSKI, M.-USTIMENKO, V.: Graph based cubical multivariate maps and their cryptographical applications. In: Advances on Superelliptic curves and their Applications, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., Vol. 41, IOS, Amsterdam, 2015 pp. 305-327.
  24. [24] WROBLEWSKA, A.-USTIMENKO, V.: On new examples of families of multivariate stable maps and their cryptographical applications, Ann. Univ. Mariae Curie-Sk_lodowska Sect. AI-Inform. 14 (2014), no. 1, 19-35.10.2478/umcsinfo-2014-0004
  25. [25] , USTIMENKO, V.- WOLDAR, A.: A geometric approach to orbital recognition in Chevalley-type coherent configurations and association schemes, Australas. J. Combin. 67 (2017), no. 2, 166-202.
DOI: https://doi.org/10.1515/tmmp-2017-0021 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 107 - 117
Submitted on: Aug 13, 2017
Published on: Mar 23, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2018 Vasyl Ustimenko, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.