Have a personal or library account? Click to login
Three Ways of Defining Owa Operator on the Set of All Normal Convex Fuzzy Sets Cover

Three Ways of Defining Owa Operator on the Set of All Normal Convex Fuzzy Sets

By: Zdenko Takáč  
Open Access
|Mar 2018

References

  1. [1] BUSTINCE, H.-FERNANDEZ, J.-KOLESÁROVÁ, A.-MESIAR, R.: Generation of linear orders for intervals by means of aggregation functions, Fuzzy Set Syst. 220 (2013), 69-77.10.1016/j.fss.2013.05.015
  2. [2] BUSTINCE, H.-GALAR,M.-BEDREGAL, B.-KOLESÁROVÁ, A.-MESIAR, R.: A new approach to interval-valued choquet integrals and the problem of ordering in intervalvalued fuzzy set applications, IEEE Transactions on Fuzzy Systems 21 (2013), 1150-1162.10.1109/TFUZZ.2013.2265090
  3. [3] DUBOIS, D.-PRADE, H.: Gradual elements in a fuzzy set, Soft Comput. 12 (2008), 165-175.10.1007/s00500-007-0187-6
  4. [4] FORTIN, J.-DUBOIS, D.-FARGIER, H.: Gradual numbers and their application to fuzzy interval analysis, IEEE T Fuzzy Syst. 16 (2008), 388-402.10.1109/TFUZZ.2006.890680
  5. [5] LIZASOAIN, I.-MORENO, C.: OWA operators defined on complete lattices, Fuzzy Set Syst. 224 (2013), 36-52.10.1016/j.fss.2012.10.012
  6. [6] OCHOA, G.-LIZASOAIN, I.-PATERNAIN, D.-BUSTINCE, H.-PAL, N.R.: Some properties of lattice OWA operators and their importance in image processing, in: Proceedings of IFSA-EUSFLAT 2015, Gijón, Spain, 2015, pp. 1261-1265,10.2991/ifsa-eusflat-15.2015.178
  7. [7] TAKÁČ, Z.: , A linear order and OWA operator for discrete gradual real numbers, in: Proceedings of IFSA-EUSFLAT 2015, Gijón, Spain, 2015, pp. 260-266.10.2991/ifsa-eusflat-15.2015.39
  8. [8] OWA operators for fuzzy truth values, in: Proceedings of Uncertainty Modelling 2015, JSMF, Bratislava, Slovakia, 2016, pp. 67-73.
  9. [9] OWA operator for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making, Kybernetika 52 (2016), 379-402.10.14736/kyb-2016-3-0379
  10. [10] WALKER, C.L.-WALKER, E.A.: The algebra of fuzzy truth values, Fuzzy Set Syst. 149 (2005), 309-347.10.1016/j.fss.2003.12.003
  11. [11] YAGER, R. R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE T Syst. Man. Cyb. 18 (1988), 183-190.10.1109/21.87068
  12. [12] ZADEH, L. A.: The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sciences 8 (1975), 199-249.10.1016/0020-0255(75)90036-5
  13. [13] ZHOU, S.M.-CHICLANA, F.-JOHN, R. I.-GARIBALDI, J.M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers, Fuzzy Set Syst. 159 (2008), 3281-3296.10.1016/j.fss.2008.06.018
  14. [14] Alpha-level aggregation: A practical approach to type-1 OWA operation for aggregating uncertain information with applications to breast cancer, IEEE T Knowl Data En. 23 (2011), 1455-1468.10.1109/TKDE.2010.191
  15. [15] ZHOU, S.M.-GARIBALDI, J.M.-CHICLANA, F.-JOHN, R. I.-WANG, X.Y.: Type-1OWA operator based non-stationary fuzzy decision support systems for breast cancer treatments, in: IEEE International Conference on Fuzzy Systems, 2009, pp. 175-180.10.1109/FUZZY.2009.5277142
DOI: https://doi.org/10.1515/tmmp-2017-0017 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 101 - 118
Submitted on: Apr 13, 2017
Published on: Mar 23, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year
Keywords:

© 2018 Zdenko Takáč, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.