Have a personal or library account? Click to login
On an Application of a Higher Order Inversion Theorem to Certain Integral Equations and Boundary Value Problems Cover

On an Application of a Higher Order Inversion Theorem to Certain Integral Equations and Boundary Value Problems

Open Access
|Mar 2018

References

  1. [1] AMBROSETTI, A.-PRODI, G.: A Primer of Nonlinear Analysis. in: Cambridge Studies in Advanced Mathematics, Vol. 34, Cambridge University Press, Cambridge, 1993.
  2. [2] GALEWSKI, M.-RĂDULESCU, M.: A note on a global invertibility of locally Lipschitz function on Rn, arXiv:1509.02965v1, Quaest. Math. (to appear).
  3. [3] GUTÚ, O.: On global inverse theorems, Topol. Methods Nonlinear Anal. 49 (2017), 401-444.
  4. [4] FIJAŁKOWSKI, P.: Local inversion theorem for singular points, Nonlinear Anal. 54 (2003), 341-349.10.1016/S0362-546X(03)00066-X
  5. [5] On a Certain Class of Locally Invertible Mapping and their Applications. Wydawnictwo Uniwersytetu 1] AMBROSETTI, A.-PRODI, G.: A Primer of Nonlinear Analysis. in: Cambridge Studies in Advanced Mathematics, Vol. 34, Cambridge University Press, Cambridge, 1993.
  6. [6] A global inversion theorem for functions with singular points, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 173-180.10.3934/dcdsb.2018011
  7. [7] HADAMARD, J.: Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71-84.10.24033/bsmf.771
  8. [8] IDCZAK, D.-SKOWRON, A.-WALCZAK, S.: On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012), 89-100.10.1515/ans-2012-0105
  9. [9] PLASTOCK, R.: Homeomorhisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974), 169-183.10.1090/S0002-9947-1974-0356122-6
  10. [10] RĂDULESCU, M.-RĂDULESCU, S.: Global inverse theorems and applications to differential equations, Nonlinear Anal. 4 (1980), 951-965.10.1016/0362-546X(80)90007-3
  11. [11] An application of Hadamard-Lévy’s Theorem to a scalar initial value problem, Proc. Amer. Math. Soc. 106 (1989), 139-143.10.1090/S0002-9939-1989-0952321-7
  12. [12] WAZWAZ, A. M.: Linear and Nonlinear Integral Equations. Methods and Application. Springer-Verlag, Berlin, 2011.10.1007/978-3-642-21449-3
  13. [13] ZAMPIERI, G.: Diffeomorphisms with Banach space domains, Nonlinear Anal. 19 (1992), 923-932Łodzkiego, Łodź, 2003.
DOI: https://doi.org/10.1515/tmmp-2017-0012 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 35 - 44
Published on: Mar 23, 2018
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year
Keywords:

© 2018 Piotr Fijałkowski, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.