Have a personal or library account? Click to login
Convergence of Linear Approximation of Archimedean Generator from Williamson’s Transform in Examples Cover

Convergence of Linear Approximation of Archimedean Generator from Williamson’s Transform in Examples

Open Access
|Mar 2018

References

  1. [1] BACIG´AL, T.-JUR´A ˇNOV´A, M.-MESIAR, R.: On some new constructions of Archimedean copulas and applications to fitting problems, Neural Netw. World 20 (2010), 81-90.
  2. [2] BACIG´AL, T.-MESIAR, R.-NAJJARI, V.: Generators of copulas and aggregation, Inform. Sci. (submitted).
  3. [3] CHARPENTIER, A.-SEGERS, J.: Convergence of Archimedean copulas, Statist. Probab. Lett. 78 (2008), 412-419.10.1016/j.spl.2007.07.014
  4. [4] J´AGR, V.-KOMORN´IKOV´A, M.-MESIAR, R.: Conditioning stable copulas, Neural Netw. World 20 (2010), 69-79.
  5. [5] JOE, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London, 1997.10.1201/9780367803896
  6. [6] KLEMENT, E. P.-MESIAR, R.-PAP, E.: Triangular norms. Kluwer Acad. Publ., Dodrecht, 2000.10.1007/978-94-015-9540-7
  7. [7] KLEMENT, E. P.-MESIAR, R.-PAP, E.: Transformations of copulas, Kybernetika 41 (2005), 425-434.
  8. [8] MCNEIL, A. J.-NEˇSLEHOV´A, J.: Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions, Ann. Statist. 37 (2009), 3059-3097.10.1214/07-AOS556
  9. [9] MENGER, K.: Statistical metrics, Proc. Natl. Acad. Sci. USA 28(12) (1942), 535-537.10.1073/pnas.28.12.535107853416588583
  10. [10] MESIAR, R.: On the pointwise convergence of continuous Archimedean t-norms and the convergence of their generators, BUSEFAL 75 (1998), 39-45.
DOI: https://doi.org/10.1515/tmmp-2017-0010 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 18
Submitted on: Apr 13, 2017
|
Published on: Mar 23, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year
Keywords:

© 2018 Tomáš Bacigál, Mária Ždímalová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.