Have a personal or library account? Click to login
Quasicontinuous Functions, Densely Continuous Forms and Compactness Cover

Quasicontinuous Functions, Densely Continuous Forms and Compactness

By: L’ubica Holá and  Dušan Holý  
Open Access
|Nov 2017

References

  1. [1] BEER, G.: Topologies on Closed and Closed Convex Sets. Kluwer Acad. Publ., 1993.10.1007/978-94-015-8149-3
  2. [2] BORSÍK, J.: Points of continuity, quasicontinuity and cliquishness, Rend. Istit. Math. Univ. Trieste 26 (1994), 5–20.
  3. [3] BOUZIAD, A.: Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953–959.10.1090/S0002-9939-96-03384-9
  4. [4] CRANNELL, A.—FRANTZ, M.—LEMASURIER, M.: Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31 (2006/2007), 409–424.10.14321/realanalexch.31.2.0409
  5. [5] GILES, J. R.—BARTLETT, M. O.: Modified continuity and a generalization of Michael’s selection theorem, Set-Valued Anal. 1 (1993), 247–268.10.1007/BF01027826
  6. [6] HOLÁ, L’.: Functional characterization of p-spaces, Cent. Eur. J. Math. 11 (2013), 2197–2202.
  7. [7] HOLÁ, L’.—HOLÝ, D.: Minimal USCO maps, densely continuous forms and upper semicontinuous functions, Rocky Mount. Math. J. 39 (2009), 545–562.10.1216/RMJ-2009-39-2-545
  8. [8] HOLÁ, L’.—HOLÝ, D.: New characterization of minimal CUSCO maps, Rocky Mount. Math. J. 44 (2014), 1851–1866.10.1216/RMJ-2014-44-6-1851
  9. [9] HOLÁ, L’.—HOLÝ, D.: Quasicontinuous subcontinuous functions and compactness, Mediterranean J. Math. 13 (2016), 4509–4518.10.1007/s00009-016-0759-8
  10. [10] HOLÁ, L’.—HOLÝ, D.: Quasicontinuous functions and compactness (submitted).
  11. [11] HOLÝ, D.: Ascoli-type theorems for locally bounded quasicontinuous functions, minimal usco and minimal cusco maps, Ann. Funct. Anal. 6 (2015), 29–41, http://projecteuclid.org/afa
  12. [12] HAMMER, S. T.—MCCOY, R. A.: Spaces of densely continuous forms, Set-Valued Anal. 5 (1997), 247–266.10.1023/A:1008666504767
  13. [13] KELLEY, J. L.: General Topology. Van Nostrand, New York, 1955.
  14. [14] KEMPISTY, S.: Sur les fonctions quasi-continues, Fund. Math. 19 (1932), 184–197.10.4064/fm-19-1-184-197
  15. [15] MATEJDES, M.: Minimality of multifunctions, Real Anal. Exchange 32 (2007), 519–526.10.14321/realanalexch.32.2.0519
  16. [16] MOORS, W. B.: Any semitopological group that is homeomorphic to a product of Čech-complete spaces is a topological group, Set-Valued Var. Anal. 21 (2013), 627–633.10.1007/s11228-013-0252-5
  17. [17] MOORS, W. B.: Fragmentable mappings and CHART groups, Fund. Math. 234 (2016), 191–200.
  18. [18] MOORS, W. B.: Semitopological groups, Bouziad spaces and topological groups, Topology Appl. 160 (2013), 2038–2048.10.1016/j.topol.2013.08.008
  19. [19] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988), 259–306.10.2307/44151947
  20. [20] VAUGHAN, H.: On locally compact metrizable spaces, Bull. Amer. Math. Soc. 43 (1937), 532–535.10.1090/S0002-9904-1937-06593-1
DOI: https://doi.org/10.1515/tmmp-2017-0008 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 93 - 102
Submitted on: Dec 12, 2016
Published on: Nov 18, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 L’ubica Holá, Dušan Holý, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.