Have a personal or library account? Click to login
Comparison of Some Families of Real Functions in Algebraic Terms Cover

Comparison of Some Families of Real Functions in Algebraic Terms

Open Access
|Nov 2017

References

  1. [1] BALCERZAK, M.—BARTOSZEWICZ, A.—FILIPCZAK, M.: Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263-269.10.1016/j.jmaa.2013.05.019
  2. [2] BARTOSZEWICZ, A.—BIENIAS, M.—FILIPCZAK, M.—GŁĄB, S.: Strong c-algebrability of strong Sierpiński-Zygmunt, smooth nowhere analytic and other sets of functions, J. Math Anal. Appl. 412 (2014), 620-630.10.1016/j.jmaa.2013.10.075
  3. [3] BARTOSZEWICZ, A.—GŁĄB, S.: Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), 827–835.10.1090/S0002-9939-2012-11377-2
  4. [4] BRUCKNER, A. M.: Differentiation of Real Functions, in: Lecture Notes in Math., Vol. 659, Springer, Berlin, 1978.10.1007/BFb0069821
  5. [5] FILIPCZAK, M.—IVANOVA, G.—WÓDKA, J.: Comparison of some families of real functions in porosity terms, Math. Slovaca (to appear).
  6. [6] GRANDE, Z.: On a subclass of the family of Darboux functions, Colloq. Math. 117 (2009), 95–104.10.4064/cm117-1-6
  7. [7] IVANOVA, G.: Remarks on some modification of the Darboux property, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 72 (2014), 91–100.
  8. [8] IVANOVA, G.—KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Comparison of some subfamilies of functions having the Baire property, Tatra Mt. Math. Publ. 65 (2016), 151–159.
  9. [9] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Darboux property, Math. Slovaca 66 (2016), 79–88.10.1515/ms-2015-0117
  10. [10] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Świątkowski property, Tatra Mt. Math. Publ. 58 (2014), 101–109.
  11. [11] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some subclasses of the family of Darboux Baire 1 functions, Opuscula Math. 34 (2014), 777–788.10.7494/OpMath.2014.34.4.777
  12. [12] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.10.4064/fm-19-1-184-197
  13. [13] KURATOWSKI, A.—MOSTOWSKI, A.: Set Theory with an Introduction to Descriptive Set Theory. Warszawa, PWN, 1976.
  14. [14] ŁAZAROW, E.—JOHNSON, R. A.—WILCZYŃSKI, W.: Topologies related to sets having the Baire property, Demonstratio Math. 21 (1989), 179–191.10.2478/dema-1989-0117
  15. [15] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.10.1080/00029890.1963.11990039
  16. [16] MALISZEWSKI, A.: Darboux Property and Quasi-Continuity: A Uniform Approach. WSP, Słupsk, 1996.
  17. [17] MALISZEWSKI, A.: On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. Łódź. Mat. 27 (1995), 87–93.
  18. [18] MALISZEWSKI, A.: On the averages of Darboux functions, Trans. Amer. Math. Soc. 350 (1998), 2833–2846.10.1090/S0002-9947-98-02267-3
  19. [19] MALISZEWSKI, A.: Sums and products of quasi-continuous functions, Real Anal. Exchange 21 (1995/1996), 320–329.10.2307/44153922
  20. [20] NEUBRUNNOVÁ, A.: On certain generalizations of the notion of continuity, Matematický časopis 23 (1973), 374-380.
  21. [21] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.10.4064/fm-125-2-167-173
  22. [22] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: Remarks on ℐ-density and, ℐ-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553–563.
  23. [23] WIERTELAK, R.: A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007), 273–286.10.14321/realanalexch.32.1.0273
  24. [24] WILCZYŃSKI, W.: A generalization of the density topology, Real Anal. Exchange 8 (1982/1983), 16–20.10.2307/44151572
  25. [25] WILCZYŃSKI, W.: A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984/1985), 241–265.10.2307/44153572
  26. [26] WILCZYŃSKI, W.: Density topologies, in: Handbook of Measure Theory, Vol. I and II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 675-702.10.1016/B978-044450263-6/50016-6
  27. [27] WÓDKA, J.: Subsets of some families of real functions and their algebrability, Linear Algebra Appl. 459 (2014), 454–464.10.1016/j.laa.2014.07.015
DOI: https://doi.org/10.1515/tmmp-2017-0001 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 11
Submitted on: Nov 19, 2015
Published on: Nov 18, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Małgorzata Filipczak, Gertruda Ivanova, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.