Have a personal or library account? Click to login
Fingerprint Recognition System Using Artificial Neural Network as Feature Extractor: Design and Performance Evaluation Cover

Fingerprint Recognition System Using Artificial Neural Network as Feature Extractor: Design and Performance Evaluation

Open Access
|Feb 2017

References

  1. [1] BARTŮNĚK, J. S.: Fingerprint Image Enhancement, Segmentation and Minutiae Detection, Doctoral Dissertation, Blekinge Institute of Technology (2016), 168 p.
  2. [2] BARTŮNĚK, J. S., J. S.—NILSSON, M.—NORDBERG, J.—CLAESSON, I.: Neural network based minutiae extraction from skeletonized fingerprints, in: TENCON 2006, IEEE Region 10 Conference (2006), 4 p.10.1109/TENCON.2006.344104
  3. [3] CAPPELLI, R.: SFinGe: an approach to synthetic fingerprint generation, in: International Workshop on Biometric Technologies (2004), Calgary, Canada, 147–154.
  4. [4] CAPPELLI, R.—FERRARA, M.—MALTONI, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition, IEEE Transactions on Pattern Analysis Machine Intelligence 32, (2010), no. 12, 2128–2141.
  5. [5] CAPPELLI, R.—FERRARA, M.: A fingerprint retrieval system based on level-1 and level-2 features, Expert Systems with Applications 39 (2012), 10465–10478.10.1016/j.eswa.2012.02.064
  6. [6] DENG, H.—HUO, Q.: Minutiae matching based fingerprint verification using delaunay triangulation and aligned-edge-guided triangle matching, Proceedings of the 5th Int. Conference on Audio-and Video-Based Biometric Person Authentication (2005), 270–278.10.1007/11527923_28
  7. [7] GOLABI, S.—SAADAT, S.—HELFROUSH, M. S.—TASHK, A.: A novel thinning algorithm with fingerprint minutiae extraction capability, International Journal of Computer Theory and Engineering 4 (2012), no. 4, 514–517.
  8. [8] GOTTSCHLICH, C.: Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement, IEEE Transactions on Image Processing 21 (2012), no. 4, 2220–2227.
  9. [9] GUO, Z.—HALL, R.: Parallel thinning with two sub-iteration algorithms, Communications of the ACM 32 (1989) no. 3, 359–373.
  10. [10] IGEL, CH.—HÜSKEN, M.: Improving the Rprop learning algorithm, in: The Second International Symposium on Neural Computation (NC 2000), ICSC Academic Press, 2000, pp. 115–121.
  11. [11] KULKARNI, S.: Fingerprint feature extraction and classification by learning the characteristics of fingerprint patterns, Neural Network World (2011), 21 (2011), no. 3, 219–226.
  12. [12] MAIO, D.—MALTONI, D.: Direct gray-scale minutiae detection in fingerprints, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997), no. 1, 27–40.
  13. [13] MALTONI, D.—MAIO, D.—JAIN, A.K.—PRABHAKAR, S.: Handbook of Fingerprint Recognition, 2nd Edition, Springer-Verlag London (2009), 494 p.10.1007/978-1-84882-254-2
  14. [14] NISSEN, S.: Implementation of a fast artificial neural network library (FANN), Department of Computer Science, University of Copenhagen (DIKU) (2003), 92 p.
  15. [15] PANKANTI, S.—PRABHAKAR, S.—JAIN, A. K.: On the individuality of fingerprints, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (2002), no. 8, 1010–1025.
  16. [16] PERALTA, D. ET AL.: A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation, Information Sciences 315 (2015), 67–87.10.1016/j.ins.2015.04.013
  17. [17] POKHRIYAL, A.—LEHRI, S.: MERIT: Minutiae extraction using rotation invariant thinning, Int. Journal of Engineering Science and Technology 2 (2010), 3225–3235.
  18. [18] SHI, Z.—GOVINDARAJU, V.: A chaincode based scheme for fingerprint feature extraction, Pattern Recognition Letters 27 (2006), 462–468.10.1016/j.patrec.2005.09.003
  19. [19] SHORT, N.—ABBOTT, L.—HSIAO, M.—FOX, E.: Robust feature extraction in fingerprint images using ridge model tracking, Center for Embedded Systems for Critical Applications, Bradley Department of Electrical and Computer Engineering (2014), 9 p.
  20. [20] THAI, R.: Fingerprint image enhancement and minutiae extraction, The University of Western Australia (2003), 71 p.
  21. [21] WATSON, C. I. ET AL.: User’s Guide to NIST Biometric Image Software (NBIS), National Institute of Standards and Technology Gaithersburg, MD, 2004, 207 p.
  22. [22] ZHAO, Q.—JAIN, A. K.: On the utility of extended fingerprint features: A study on pores, IEEE Comp. Soc. Confer. on Comp. Vision and Pattern Recognition (2010), 8 p.10.1109/CVPRW.2010.5543239
  23. [23] ZHI, V. T. D.—SUANDI, S. A.: FingerCode for identity verification using fingerprint and smart card, in: 10th Asian Control Conference (2015), 6 p.
DOI: https://doi.org/10.1515/tmmp-2016-0035 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 117 - 134
Submitted on: Dec 1, 2016
Published on: Feb 25, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Pavol Marák, Alexander Hambalík, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.