Have a personal or library account? Click to login
Speed Optimizations in Bitcoin Key Recovery Attacks Cover
Open Access
|Feb 2017

References

  1. [1] BERNSTEIN, D. J.—LANGE, T.: Explicit-formulas database, 2007, https://hyperelliptic.org/EFD/
  2. [2] BERNSTEIN, D. J.—LANGE, T.: Faster addition and doubling on elliptic curves, in: Advances in cryptology–ASIACRYPT ’07, Lecture Notes in Comput. Sci., Vol. 4833, Springer-Verlag, Berlin, 2007, pp. 29–50.
  3. [3] BRICKELL, E. F.—GORDON, D. M.—MCCURLEY, K. S.—WILSON, D. B.: Fast exponentiation with precomputation, in: Advances in Cryptology-EUROCRYPT ’92, Springer-Verlag, Berlin, 1993, pp. 200–207.10.1007/3-540-47555-9_18
  4. [4] BRIER, E.—JOYE, M.: Weierstraß elliptic curves and side-channel attacks, in: International Workshop on Public Key Cryptography—PKC ’02, Springer-Verlag, 2002, pp. 335–345.10.1007/3-540-45664-3_24
  5. [5] BROWN, M.—HANKERSON, D.—LÓPEZ, J.—MENEZES, A.: Software implementation of the NIST elliptic curves over prime fields, in: Proceedings of the 2001 Conference on Topics in Cryptology: The Cryptographer’s Track at RSA, April 08–12, 2001, CT-RSA ’01, London, UK; Lecture Notes in Comput. Sci., Vol. 2020, Springer-Verlag, 2001. pp.250–265.
  6. [6] CASTELLUCCI, R.: Cracking cryptocurrency brainwallets, https://www.defcon.org/html/defcon-23/dc-23-index.html
  7. [7] CERTICOM RESEARCH: Sec 2: Recommended elliptic curve domain parameters, in: Proceeding of Standards for Efficient Cryptography, Version 1, 2000. www.secg.org/SEC2-Ver-1.0.pdf
  8. [8] COHEN, H.—MIYAJI, A.—ONO, T.: Efficient elliptic curve exponentiation using mixed coordinates, in: Advances in Cryptology, ASIACRYPT ’98 (Beijing), Lecture Notes in Comput. Sci., Vol. 1514, Springer-Verlag, Berlin, 1998, pp. 51–65.
  9. [9] HANKERSON, D.—MENEZES, A. J.—VANSTONE, S.: Guide to Elliptic Curve Cryptography, Springer Science & Business Media, 2006.
  10. [10] KOBLITZ, N.: Elliptic curve cryptosystems, Mathematics of computation, 48 (1987), no.177, 203–209.
  11. [11] MILLER, V. S.: Use of elliptic curves in cryptography, in: Proc. Advances in Cryptology–CRYPTO ’85 (Santa Barbara, Calif., 1985), Lecture Notes in Comput. Sci., Vol. 218, Springer-Verlag, Berlin, 1986, 417–426.10.1007/3-540-39799-X_31
  12. [12] NAKAMOTO, S.: Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf, 2008.
  13. [13] RIVEST, R. L.—SHAMIR, A.—ADLEMAN, L.: A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21 (1978), no. 2, 120–126.10.21236/ADA606588
  14. [14] WUILLE, P.: bitcoin secp256k1 library, version 2015/08/11, https://github.com/bitcoin/secp256k1
  15. [15] VASEK, M.—BONNEAU, J.—KEITH, C.—CASTELLUCCI, R.—MOORE, T.: The Bitcoin brain drain: A short paper on the use and abuse of Bitcoin brain wallets, Financial Cryptography and Data Security, Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 2016.10.1007/978-3-662-54970-4_36
DOI: https://doi.org/10.1515/tmmp-2016-0030 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 55 - 68
Submitted on: Dec 2, 2016
Published on: Feb 25, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Nicolas Courtois, Guangyan Song, Ryan Castellucci, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.