Have a personal or library account? Click to login
On the Sum of Powers of Two k-Fibonacci Numbers which Belongs to the Sequence of k-Lucas Numbers Cover

On the Sum of Powers of Two k-Fibonacci Numbers which Belongs to the Sequence of k-Lucas Numbers

Open Access
|Feb 2017

References

  1. [1] FALCON, S.—PLAZA, A.: On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007), 1615–1624.10.1016/j.chaos.2006.09.022
  2. [2] FALCON, S.—PLAZA, A.: The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2007), 38–49.10.1016/j.chaos.2006.10.022
  3. [3] FALCON, S.—PLAZA, A.: On k-Fibonacci numbers of arithmetic indexes, Appl. Math. Comput. 208 (2009), 180–185.
  4. [4] FALCON, S.—PLAZA, A.: Binomial transforms of the k-Fibonacci sequence, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009), 1527–1538.10.1515/IJNSNS.2009.10.11-12.1527
  5. [5] KALMAN, D.—MENA, R.: The Fibonacci numbers exposed, Math. Mag. 76 (2003), 167–181.
  6. [6] MAREK-CRNJAC, L.: On the mass spectrum of the elementary particles of the standard model using El Naschie’s golden field theory, Chaos Solitons Fractals 15 (2003), 611–618.10.1016/S0960-0779(02)00174-1
  7. [7] MARQUES, D.—TOGBÉ, A.: On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A 86 (2010), 174–176.10.3792/pjaa.86.174
  8. [8] EL NASCHIE, M. S.: The golden mean in quantum geometry, Knot theory and related topics, Chaos Solitons Fractals 10 (1999), 1303–1307.10.1016/S0960-0779(98)00167-2
  9. [9] POSAMENTIER, A.S.—LEHMAN, I.: The (Fabulous) Fibonacci Numbers, Prometheus Books, Amherst, NY, 2007.
  10. [10] SHECHTMAN, D.—BLECH, I.—GRATIAS, D.—CAHN, J. W.: Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951–1953.10.1103/PhysRevLett.53.1951
DOI: https://doi.org/10.1515/tmmp-2016-0028 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 41 - 46
Submitted on: Sep 30, 2016
Published on: Feb 25, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Pavel Trojovský, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.