Have a personal or library account? Click to login
Plimpton 322 : A Universal Cuneiform Table for Old Babylonian Mathematicians, Builders, Surveyors and Teachers Cover

Plimpton 322 : A Universal Cuneiform Table for Old Babylonian Mathematicians, Builders, Surveyors and Teachers

By: Rudolf Hajossy  
Open Access
|Feb 2017

References

  1. [1] NEUGEBAUER, O.—SACHS, A. J.: Mathematical Cuneiform Texts. With a Chapter by A. Goetze. American Oriental Series, Vol. 29, American Oriental Society and the American Schools of Oriental Research, New Haven Connecticut, 1945.
  2. [2] BRUINS, E. M.: On Plimpton 322. Pythagorean numbers in Babylonian mathematics, Proc. Akad. Wet. Amsterdam 52 (1949), 629–632.
  3. [3] DE SOLLA PRICE, D. J.: The Babylonian Pythagorean triangle tablet, Centaurus 10 (1964), 219–231.
  4. [4] FRIBERG, J.: Methods and traditions of Babylonian mathematics. Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations, Hist. Math. 8 (1981), 277–318.10.1016/0315-0860(81)90069-0
  5. [5] HØYRUP, J.: Algebra and naive geometry. An investigation of some basic aspects of Old Babylonian mathematical thought, Altorientalische Forschungen 17 (1990), 262–266.
  6. [6] JOYCE, D. E.: Plimpton 322, Department of Math. and Comput. Sci., Clark University, 1995; http:/aleph0.clarku.edu/~djoyce/mathhist/plimpnote.htm10.1093/oso/9780192892522.003.0051
  7. [7] ROBSON, E.: Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322. Hist. Math. 28 (2001), 1–40.
  8. [8] CASSELMAN, W.: The Babylonian Tablet Plimpton 322, University of British Columbia, Vancouver, BC, Canada, 2003; http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html
  9. [9] FRIBERG, J.: A remarkable collection of Babylonian mathematical texts, sources and studies in the history of mathematics and physical sciences, (especially, Appendix 8 Plimpton 322, a Table of Parameters for igi-igi.bi Problems), Springer, Berlin, 2007, pp. 433–452.
  10. [10] BRITTON, J. P.—PROUST, CH.—SHNIDER, S.: Plimpton 322: a review and a different perspective, Arch. Hist. Exact Sci. 65 (2011), 519–566.10.1007/s00407-011-0083-4
  11. [11] PROUST, CH.: Trouver Toutes les Diagonales. Plimpton 322:à la Recherche des Rectangles Sexagésimaux, Une Version Mésopotamienne de la Recherche des “Triplets Pythagoriciens”, Images des Mathématiques, 2015.
  12. [12] ROBSON, E.: Words and pictures: New light on Plimpton 322, Amer. Math. Monthly 109 (2001), 105–120.10.1080/00029890.2002.11919845
  13. [13] ABDULAZIZ, A. A.: The Plimpton 322 tablet and the Babylonian method of generating Pythagorean triples, University of Balamand, 2010, 1–34; http://arxiv.org/abs/1004.0025v1
  14. [14] ANAGNOSTAKIS, C.—GOLDSTEIN, B. R.: On an error in the Babylonian table of Pythagorean triples, Centaurus 18 (1974), 64–66.10.1111/j.1600-0498.1974.tb00209.x
  15. [15] NEUGEBAUER, O.: Mathematische Keilschriftexte. Mathematical Cuneiform Texts, Edition with Translation and Commentary in German, Zweiter Teil/Dritter Teil, Springer-Verlag, Berlin, 1973; Glossar 30, 32, 12.
  16. [16] HANKO, M.—HAUPTVOGL, M.—HAUPTVOGL, H.: (Personal communications.)
  17. [17] BRUINS, E. M.: Pythagorean triads in Babylonian mathematics. The Mathematical Gazette 41 (1957), 25–28.
  18. [18] PROUST, CH.: On the nature of the table Plimpton 322, Mathematisches Forschunginstitut Oberwolfach, Oberwolfach Report 12/2011, 664–666.
  19. [19] KARATSUBA, A.—OFMAN, YU.: Multiplication of many-digital numbers by automatic computers. Proc. of the USSR Academy of Sci. 145 (1962), 293–294.
DOI: https://doi.org/10.1515/tmmp-2016-0027 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 40
Submitted on: Nov 2, 2015
Published on: Feb 25, 2017
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Rudolf Hajossy, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.