Have a personal or library account? Click to login
On Comparability Relations in the Class of Interval-Valued Fuzzy Relations Cover

On Comparability Relations in the Class of Interval-Valued Fuzzy Relations

Open Access
|Jan 2017

References

  1. [1] BUSTINCE, H.-BURILLO, P.: Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning, Fuzzy Sets Syst. 113 (2000), 205-219.10.1016/S0165-0114(98)00020-7
  2. [2] DE BAETS, B.-MESIAR, R.: Triangular norms on product lattices, Fuzzy Sets Syst. 104 (1999), 61-75.10.1016/S0165-0114(98)00259-0
  3. [3] DE BAETS, B.: Aggregation of structured objects, Lecture during International Symposium on Aggregation on Bounded Lattices-ABLAT ’14, Trabzon, Turkey, 2014, Karadeniz Technical University, 2014.
  4. [4] DUBOIS, D.-PRADE, H.: Possibility theory. Plenum Press, New York, 1988.10.1007/978-1-4684-5287-7
  5. [5] DUBOIS, D.- PRADE, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets, Fuzzy Sets Syst. 192 (2012), 3-24.10.1016/j.fss.2010.11.007
  6. [6] DUBOIS, D.-GODO, L.-PRADE, H.: Weighted logics for artificial intelligence an introductory discussion, Int. J. Approx. Reason. 55 (2014), 1819-1829.10.1016/j.ijar.2014.08.002
  7. [7] FISHBURN, P. C.: Intransitive indifference with unequal indifference intervals, J. Math. Psychol. 7 (1970), 144-149.10.1016/0022-2496(70)90062-3
  8. [8] FISHBURN, P. C.: Utility Theory for Decision Making. J. Wiley, New York, 1970.10.21236/AD0708563
  9. [9] FISHBURN, P. C.: Interval Orders and Interval Graphs. J. Wiley, New York, 1985.10.1016/0012-365X(85)90042-1
  10. [10] FODOR, J.-ROUBENS,M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Acad. Publ., Dordrecht, 1994.10.1007/978-94-017-1648-2
  11. [11] GOGUEN, A.: L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.10.1016/0022-247X(67)90189-8
  12. [12] GONZÁLEZ DEL CAMPÓ, R.-GARMENDIA, L.-RECASENS, J.: Transitive closure of interval-valued relations, in: Proc. of the Joint Internat. Fuzzy Systems Assoc. World Congress and European Soc. of Fuzzy Logic and Technol. Conf.-IFSA/EUSFLAT ’09 (J. P. Carvalho et al., eds.), Lisbon, Portugal, 2009, pp. 837-842.
  13. [13] KARMAKAR, S.-BHUNIA, A. K.: A comparative study of different order relations of intervals, Reliab. Comput. 16 (2012), 38-72.
  14. [14] PȨKALA, B.: Preservation of properties of interwal-valued fuzzy relations, in: Proc. of the Joint Internat. Fuzzy Systems Assoc. World Congress and European Soc. of Fuzzy Logic and Technol. Conf.-IFSA/EUSFLAT ’09 (J. P. Carvalho et al., eds.), Lisbon, Portugal, 2009, pp. 1206-1210.
  15. [15] SAMBUC, R.: Fonctions φ-floues: Application ´A l’aide au Diagnostic en Pathologie Thyroidienne, Ph.D. Thesis, Universit´e de Marseille, France, 1975. (In French)
  16. [16] ZADEH, L. A.: Fuzzy sets, Inform. Control 8 (1965), 338-353.10.1016/S0019-9958(65)90241-X
  17. [17] ZADEH, L. A.: The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8 (1975), 199-249. 10.1016/0020-0255(75)90036-5
DOI: https://doi.org/10.1515/tmmp-2016-0023 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 91 - 101
Submitted on: Jul 15, 2016
|
Published on: Jan 20, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Barbara Pȩkala, Urszula Bentkowska, Bernard De Baets, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.