Have a personal or library account? Click to login
The q-Gamma White Noise Cover

References

  1. [1] BARHOUMI, A.-OUERDIANE, H.-RIAHI, A.: Infinite dimensional Gegenbauer functionals, Banach Center Publ. 78 (2007), 35-45.10.4064/bc78-0-2
  2. [2] BARHOUMI, A.-LANCONELLI, A.-RGUIGUI, H.: QWN-convolution operators with application to differential equations, Random Oper. Stochastic Equations 22 (2014), 195-211.10.1515/rose-2014-0019
  3. [3] BARHOUMI, A.-OUERDIANE, H.-RGUIGUI, H.: QWN-Euler operator and associated Cauchy problem, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012), 1250004, 20 p.
  4. [4] BARHOUMI, A.-OUERDIANE, H.-RGUIGUI, H.: Stochastic heat equation on algebra of generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012), 1250026, 18 p.
  5. [5] BARHOUMI, A.-BEN AMMOU, B. K.-RGUIGUI, H.: Operator theory: quantum white noise approach, Quantum Stud. Math. Found. 2 (2015), 221-241.10.1007/s40509-015-0033-y
  6. [6] GANNOUN, R.-HCHAICHI, R.-OUERDIANE, H.-REZGUI, A.: Un th´eor`eme de dualit´e entre espace de fonction holomorphes `a croissance exponentielle, J. Funct. Anal. 171 (2000), 1-14.10.1006/jfan.1999.3518
  7. [7] GASPER, G.-RAHMAN, M.: Basic Hypergeometric Series, in: Encyclopedia Math. Appl., Vol. 34, Cambridge Universty Press, Cambridge, 1990.
  8. [8] KONDRATIV, YU. G.-SILVA, J. L.-STREIT, L.-US, G. F.: Analysis on Poisson and Gamma space. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), 91-118.
  9. [9] VAN LEEUWEN, H.-MAASSEN, H.: A q-deformation of the Gauss distribution. J. Math. Phys. 36 (1995), 4743-4756.
  10. [10] OBATA, N.: White Noise Calculus and Fock Space, in: Lecture Notes in Math., Vol. 1577, Springer, Berlin, 1994.
  11. [11] OUERDIANE, H.-RGUIGUI, H.: QWN-conservation operator and associated wick differential equation, Commun. Stoch. Anal. 6 (2012), 437-450.
  12. [12] RGUIGUI, H.: Quantum Ornstein-Uhlenbeck semigroups, Quantum Stud. Math. Found. 2 (2015), 159-175.10.1007/s40509-014-0023-5
  13. [13] RGUIGUI, H.: Quantum λ-potentials associated to quantum Ornstein-Uhlenbeck semigroups, Chaos Solitons Fractals 73 (2015), 80-89. 10.1016/j.chaos.2015.01.001
DOI: https://doi.org/10.1515/tmmp-2016-0022 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 81 - 90
Submitted on: Aug 26, 2016
|
Published on: Jan 20, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Hakeem A. Othman, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.