Have a personal or library account? Click to login
On Semiregularization of Some Abstract Density Topologies Involving Sets Having The Baire Property Cover

On Semiregularization of Some Abstract Density Topologies Involving Sets Having The Baire Property

Open Access
|Aug 2016

References

  1. [1] CIESIELSKI, K.-LARSON, L.-OSTASZEWSKI, K.: I-density continuous functions, Mem. Amer. Math. Soc. 515 (1994), 133 p.10.1090/memo/0515
  2. [2] HAMLETT, T. R.-JANKOVIĆ, D.- ROSE, D. A.: Lower density topologies, in: Proc. of the 7th Summer Conf. in honor of M. E. Rudin, Papers on General Topology and Appl. (S. Andima et al., eds.), Madison, WI, USA, 1991, Ann. N. Y. Acad. Sci., Vol. 704, The New York Academy of Sciences, New York, NY, 1993, pp. 309-321.10.1111/j.1749-6632.1993.tb52533.x
  3. [3] HEJDUK, J.: On the regularity of topologies in the family of sets having the Baire property, Filomat 27 (2013), 1291-1295.10.2298/FIL1307291H
  4. [4] HEJDUK, J.-LORANTY, A.-WIERTELAK, R.: J -approximately continuous functions, Tatra Mt. Math. Publ. 62 (2015), 45-55.
  5. [5] HEJDUK, J.-LORANTY, A.-WIERTELAK, R.: On J -continuous functions, Tatra Mt. Math. Publ. (to appear).
  6. [6] HEJDUK, J.-WIERTELAK, R.: On the abstract density topologies generated by lower and almost lower density operators, in: Traditional and Present-Day Topics in Real Analysis, ŁódźUniversity Press, 2013, pp. 431-447.10.18778/7525-971-1.25
  7. [7] HEJDUK, J.-WIERTELAK, R.: On the generalization of density topologies on the real line, Math. Slovaca 64 (2014), 1267-1276.10.2478/s12175-014-0274-y
  8. [8] ŁAZAROW, E.: The coarsest topology for I-approximately continuous functions, Comm. Math. Univ. Carolinae 27 (1986), 695-704.
  9. [9] MARTIN, N. F. G.: Generalized condensation points, Duke Math. J. 28 (1961), 507-514.
  10. [10] O’MALLEY, R. J.: Approximately continuous functions which are continuos almost everywhere, Acta. Math. Acad. Scient. Hungarice 33 (1979), 395-402.10.1007/BF01902575
  11. [11] OXTOBY, J. C.: Measure and Category. Springer-Verlag, Berlin, 1987.
  12. [12] POREDA, E. WAGNER-BOJAKOWSKA,: The topology of I-approximately continuous functions, Rad. Math. 2 (1986), 263-267.
  13. [13] WIERTELAK, R.: On the deep I(J)-density topology, Georgian Math. J. 20 (2013), 817-832.10.1515/gmj-2013-0032
  14. [14] WILCZYŃSKI, W.-WOJDOWSKI, W.: A category ψ-density topology, Cent. Eur. J. Math. 9 (2011), 1057-1066.10.2478/s11533-011-0069-0
  15. [15] WOJDOWSKI, W.: Density topologies involving measure and category, Demonstratio Math. 22 (1989), 797-812.
DOI: https://doi.org/10.1515/tmmp-2016-0003 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 37 - 48
Submitted on: Dec 2, 2014
Published on: Aug 4, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2016 Jacek Hejduk, Renata Wiertelak, Wojciech Wojdowski, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.