Have a personal or library account? Click to login
Limit Theorems for k-Subadditive Lattice Group-Valued Capacities in The Filter Convergence Setting Cover

Limit Theorems for k-Subadditive Lattice Group-Valued Capacities in The Filter Convergence Setting

Open Access
|Aug 2016

References

  1. [1] ATANASSOV, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg, 1999.10.1007/978-3-7908-1870-3
  2. [2] AVILES LOPEZ, A.-CASCALES SALINAS, B.-KADETS, V.-LEONOV, A.: The Schur ℓ1 theorem for filters, J. Math. Phys., Anal., Geom. 3 (2007), 383-398.
  3. [3] BERNAU, S. J.: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.10.1112/plms/s3-15.1.599
  4. [4] BOCCUTO, A.: Egorov property and weak σ-distributivity in Riesz spaces, Acta Math. (Nitra) 6 (2003), 61-66.
  5. [5] BOCCUTO, A.-DIMITRIOU, X.: Ideal limit theorems and their equivalence in (ℓ)-group setting, J. Math. Res. 5 (2013), 43-60.10.5539/jmr.v5n2p42
  6. [6] BOCCUTO, A.-DIMITRIOU, X.: Convergence Theorems for Lattice Group-Valued Measures. Bentham Sci. Publ., U. A. E., 2015.10.2174/97816810800931150101
  7. [7] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (ℓ)-groups, Tatra Mt. Math. Publ. 49 (2011), 17-26.
  8. [8] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU,N.: Some versions of limit and Dieudonn´e-type theorems with respect to filter convergence for (ℓ)-group-valued measures, Cent. Eur. J. Math. 9 (2011), 1298-1311.10.2478/s11533-011-0083-2
  9. [9] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca 62 (2012), 1145-1166.10.2478/s12175-012-0070-5
  10. [10] BOCCUTO, A.-MINOTTI, A. M.-SAMBUCINI, A. R.: Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAmer. Math. J. 23 (2013), 57-74.
  11. [11] BOCCUTO, A.-RIEČAN, B.-SAMBUCINI, A. R.: On the product of M-measures in (ℓ)-groups, Aust. J. Math. Anal. Appl. 7 (2010), Article No. 9, 8 p.
  12. [12] BOCCUTO, A.-RIEˇCAN, B.-VR´ABELOV´A, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Sci. Publ., U. A. E., 2009.
  13. [13] BOCCUTO, A.-SAMBUCINI, A. R.: The monotone integral with respect to Riesz spacevalued capacities, Rend. Mat. Appl. 16 (1996), 491-524.
  14. [14] CANDELORO, D.-SAMBUCINI, A. R.: Filter convergence and decompositions for vector lattice-valued measures, Mediterr. J. Math. 12 (2015), 612-637.10.1007/s00009-014-0431-0
  15. [15] CAVALIERE, P.-DE LUCIA, P.: On Brooks-Jewett, Vitali-Hahn-Saks and Nikod´ym convergence theorems for quasi-triangular functions, Rend. Lincei Mat. Appl. 20 (2009), 387-396.
  16. [16] DOBRAKOV, I.: On submeasures I, Dissertationes Math. 112 (1974), 5-35.
  17. [17] DOBRAKOV, I.-FARKOV´A, J.: On submeasures II, Math. Slovaca 30 (1980), 65-81.
  18. [18] DREWNOWSKI, L.: Topological rings of sets, Continuous set functions, Integration. I, II, III, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 269-276, 277-286, 439-445.
  19. [19] FREMLIN, D. H.: A direct proof of the Matthes-Wright integral extension theorem, J. London Math. Soc. 11 (1975), 276-284.10.1112/jlms/s2-11.3.276
  20. [20] GUARIGLIA, E.: Uniform boundedness theorems for k-triangular set functions, Acta Sci. Math. 54 (1990), 391-407.
  21. [21] PAP, E.: A generalization of a Dieudonn´e theorem for k-triangular set functions, Acta Sci. Math. 50 (1986), 159-167.
  22. [22] PAP, E.: The Vitali-Hahn-Saks Theorems for k-triangular set functions, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32.
  23. [23] PAP, E.: Null-Additive Set Functions, in: Math. Appl., Vol. 337, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 1995.
  24. [24] RIEˇCAN, B.-NEUBRUNN, T.: Integral, Measure and Ordering, in: Math. Appl., Vol. 411, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 1997.10.1007/978-94-015-8919-2
  25. [25] SAEKI, S.: The Vitali-Hahn-Saks theorem and measuroids, Proc. Amer. Math. Soc. 114 (1992), 775-782.10.1090/S0002-9939-1992-1088446-8
  26. [26] VENTRIGLIA, F.: Dieudonn´e’s theorem for non-additive set functions, J. Math. Anal. Appl. 367 (2010), 296-303.10.1016/j.jmaa.2010.01.017
DOI: https://doi.org/10.1515/tmmp-2016-0001 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 21
Submitted on: Oct 20, 2014
Published on: Aug 4, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2016 Antonio Boccuto, Xenofon Dimitriou, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.