Have a personal or library account? Click to login
Distribution functions of ratio sequences. An expository paper Cover

Distribution functions of ratio sequences. An expository paper

By: Oto Strauch  
Open Access
|Feb 2016

References

  1. [1] ACZÉL, J.: Lectures on Functional Equations and their Applications. Academic Press, New York, 1966.
  2. [2] BARONE, H. G.: Limit points of sequences and their transforms by methods of summability, Duke Math. J. 5 (1939), 740-752.10.1215/S0012-7094-39-00560-0
  3. [3] BALÁˇZ, V.-MIŠÍK, L.-STRAUCH, O.-TÓTH, J. T.: Distribution functions of ratio sequences, III, Publ. Math. Debrecen 82 (2013), 511-529.10.5486/PMD.2013.4770
  4. [4] BALÁˇZ, V.-MIŠÍK, L.-STRAUCH, O.-TÓTH, J.T.: Distribution functions of ratio sequences, IV, Period. Math. Hung. 66 (2013), 1-22.10.1007/s10998-013-4116-4
  5. [5] DRMOTA, M.-TICHY, R. F.: Sequences, Discrepancies and Applications, in: Lect. Notes Math., Vol. 1651, Springer-Verlag, Berlin, 1997.
  6. [6] FILIP, F.-TÓTH, J. T.: On estimations of dispersions of certain dense block sequences, Tatra Mt. Math. Publ. 31 (2005), 65-74.
  7. [7] FILIP, F.-TÓTH, J. T.: Characterization of asymptotic distribution functions of block sequences, 2007 (submitted).
  8. [8] FILIP, F.-MIŠÍK, L.-TÓTH, J. T.: On distribution functions of certain block sequences, Unif. Distrib. Theory 2 (2007), 115-126.
  9. [9] GREKOS, G.-STRAUCH, O.: Distribution functions of ratio sequences, II, Unif. Distrib. Theory 2 (2007), 53-77.
  10. [10] HLAWKA, E.: The theory of uniform distribution, A B Acad. Publ., London, 1984 (English transl. of: Theorie der Gleichverteilung. Bibl. Inst., Mannheim-Wien-Zürich, 1979).
  11. [11] KNAPOWSKI, S.: Über ein Problem der Gleichverteilung, Colloq. Math. 5 (1958), 8-10.10.4064/cm-5-1-8-10
  12. [12] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences. JohnWiley & Sons, New York 1974, reprint: Dover Publications, Inc. Mineola, New York, 2006.
  13. [13] MYERSON, G.: A sampler of recent developments in the distribution of sequences, in: Number Theory with an Emphasis on the Markoff Spectrum (A.D. Pollington et al., eds.), Provo, UT, 1991, Lect. Notes Pure Appl. Math., Vol. 147, Marcel Dekker, New York, 1993, pp. 163-190.10.1201/9780203747018-16
  14. [14] NIEDERREITER, H.:: Random Number Generation and Quasi-Monte Carlo Methods, SIAM Conf. Ser. Appl. Math., Vol. 63, Society for Industrial and Applied Mathematics, Philadelphia, 1992.10.1137/1.9781611970081
  15. [15] PORUBSKÝ-Š.-ŠALÁT, T.-STRAUCH, O.: On a class of uniform distributed sequences, Math. Slovaca 40 (1990), 143-170.
  16. [16] ŠALÁT, T.: On ratio sets of sets of natural numbers, Acta Arith. XV (1969), 273-278.10.4064/aa-15-3-273-278
  17. [17] SCHOENBERG, I. J.: Ü ber die asymptotische Vertaeilung reeller Zahlen mod 1, Math. Z. 28 (1928), 171-199.10.1007/BF01181156
  18. [18] STRAUCH, O.: A new moment problem of distribution functions in the unit interval, Math. Slovaca 44 (1994), 171-211.
  19. [19] STRAUCH, O.: L2 discrepancy, Math. Slovaca 44 (1994), 601-632.
  20. [20] STRAUCH, O.: Unsolved problems, Tatra Mt. Math. Publ. 56 (2013), 109-229, http://udt.mat.savba.sk/
  21. [21] STRAUCH, O.-PORUBSKÝ, Š.: Distribution of Sequences: A Sampler. Peter Lang, Frankfurt am Main, 2005.
  22. [22] STRAUCH, O.-TÓTH, J. T.: Asymptotic density of A ⊂ N and density of the ratio set R(A), Acta Arith. LXXXVII (1998), 67-78.10.4064/aa-87-1-67-78
  23. [23] STRAUCH, O.-TÓTH, J. T.: Corrigendum to Theorem 5 of the paper “Asymptotic density of A ⊂ N and density of ratio set R(A)” (Acta Arith. 87 (1998), 67-78), Acta Arith. 103.2 (2002), 191-200.
  24. [24] STRAUCH, O.-TÓTH, J. T.: Distribution functions of ratio sequences, Publ. Math. Debrecen 58 (2001), 751-778.10.5486/PMD.2001.2445
  25. [25] TICHY, R. F.: Three examples of triangular arrays with optimal discrepancy and linear recurrences, in: Applications of Fibonacci Numbers, Vol. 7, Proc. of the 7th Internat. Research Conference on Fibonacci Numbers and Their Appl. (G. E. Bergum et al., eds.), Graz, Austria, 1996, Kluwer Acad. Publ., Dordrecht, 1998, pp. 415-423.10.1007/978-94-011-5020-0_46
  26. [26] TÓTH, J. T.-MIŠ Í K, L.-FILIP, F.: On some properties of dispersion of block sequences of positive integers, Math. Slovaca 54 (2004), 453-464.
DOI: https://doi.org/10.1515/tmmp-2015-0047 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 133 - 185
Submitted on: Nov 28, 2015
|
Published on: Feb 19, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2016 Oto Strauch, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.