Have a personal or library account? Click to login
Applications of uniform distribution theory to the Riemann zeta-function Cover

Applications of uniform distribution theory to the Riemann zeta-function

Open Access
|Feb 2016

References

  1. [1] ARIAS DE REYNA, J.: On the distribution (mod 1) of the normalized zeros of the Riemann zeta-function, J. Number Theory 153 (2015), 37-53.10.1016/j.jnt.2015.01.006
  2. [2] BOHR, H.-COURANT, R.: Neue Anwendungen der Theorie der diophantischen Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249-274.10.1515/crll.1914.144.249
  3. [3] EDWARDS, H. M.: Riemann’s Zeta Function, in: Pure Appl. Math., Vol. 58, Academic Press, New York, 1974.
  4. [4] ELLIOTT, P. D. T. A.: The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254 (1972), 100-109.
  5. [5] FORD, K.-SOUNDARARAJAN, K.-ZAHARESCU, A.: On the distribution of imaginary parts of zeros of the Riemann zeta function, J. Reine Angew. Math. 579 (2005), 145-158.10.1515/crll.2005.2005.579.145
  6. [6] FUJII, A.: On the uniformity of the distribution of the zeros of the Riemann zeta function, J. Reine Angew. Math. 302 (1978), 167-205.
  7. [7] FUJII, A.: On a conjecture of Shanks, Proc. Japan Acad. 70 (1994), 109-114.
  8. [8] FUJII, A.: Some observations concerning the distribution of the zeros of the zeta functions, III, Proc. Japan Acad. Ser. A 68 (1992), 105-110.
  9. [9] GARUNKŠTIS, R.-STEUDING, J.: On the roots of the equation ζ(s) = a, Abh. Math. Semin. Univ. Hamb. 84 (2014), 1-15.10.1007/s12188-014-0093-7
  10. [10] HARDY, G. H.-LITTLEWOOD, J. E.: Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes, Acta Math. 41 (1916), 119-196.10.1007/BF02422942
  11. [11] HLAWKA, E.: Über die Gleichverteilung gewisser Folgen, welche mit den Nullstellen der Zetafunktion zusammenhängen, Österr. Akad. Wiss., Math.-Naturw. Kl. Abt. II 184 (1975), 459-471.
  12. [12] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974.
  13. [13] LANDAU, E.: Über die Nullstellen der Zetafunktion, Math. Ann. 71 (1912), 548-564.10.1007/BF01456808
  14. [14] ÖZBEK, S. S.-STEUDING, J.: On the distribution of the argument of the Riemann zeta-function on the critical line, Unif. Distrib. Theory 10 (2015), (to appear).
  15. [15] RADEMACHER, H. A.: Fourier analysis in number theory, in: Symposium on Harmonic Analysis and Related Integral Transforms, Cornell Univ., Ithaca, N.Y., 1956; Collected Papers of Hans Rademacher, Vol. II, Massachusetts Inst. Tech., Cambridge, Mass., 1974, pp. 434-458.
  16. [16] SHANKS, D.: Review of ‘Tables of the Riemann Zeta Function’ by C.B. Haselgrove in collaboration with J.C.P. Miller, Math. Comp. 15 (1961), 84-86.10.2307/2003098
  17. [17] TITCHMARSH, E. C.: The Theory of the Riemann Zeta-Function (2nd ed.). Oxford University Press, Oxford, 1986.
  18. [18] TRUDGIAN, T. S.: On a conjecture of Shanks, J. Number Theory 130 (2010), 2635-2638.10.1016/j.jnt.2010.04.010
  19. [19] VAN DER CORPUT, J. G.: Diophantische Ungleichungen. I: Zur Gleichverteilung modulo Eins. Acta Math. 56 (1931), 373-456.
  20. [20] WEYL, H.: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352. 10.1007/BF01475864
DOI: https://doi.org/10.1515/tmmp-2015-0042 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 67 - 74
Submitted on: Oct 21, 2015
Published on: Feb 19, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2016 Selin Selen Özbek, Jörn Steuding, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.