Have a personal or library account? Click to login
Power integral bases in a family of sextic fields with quadratic subfields Cover

Power integral bases in a family of sextic fields with quadratic subfields

Open Access
|Feb 2016

References

  1. [1] CHAR,B.W.-GEDDES, K.O.-GONNET,G.H.-MONAGAN,M.B.-WATT,S.M. (EDS.): MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada, 1988.
  2. [2] GAÁL, I.: Power integral bases in composits of number fields, Canad. Math. Bull. 41 (1998), 158-161.10.4153/CMB-1998-025-3
  3. [3] GAÁL, I.: Power integral bases in cubic relative extensions, Experiment. Math. 10 (2001), 133-139.10.1080/10586458.2001.10504436
  4. [4] GAÁL, I.: Diophantine equations and power integral bases. Boston, Birkhäuser, 2002.10.1007/978-1-4612-0085-7
  5. [5] GAÁL, I.-LETTL, G.: A parametric family of quintic Thue equations II., Monatsh. Math. 131 (2000), 29-35.10.1007/s006050070022
  6. [6] GAÁL, I.-REMETE, L.: Non-monogenity in a family of octic fields, Rocky Mountain J. Math. (to appear).
  7. [7] GAÁL, I.-REMETE, L.-SZABÓ, T.: Calculating power integral bases by using relative power integral bases, Funct. Approx. Comment. Math. (to appear).
  8. [8] GAÁL, I.-SZABÓ, T.: Power integral bases in parametric families of biquadratic fields, JP J. Algebra Number Theory Appl. 21 (2012), 105-114.
  9. [9] GAÁL, I.-SZABÓ, T.: Relative power integral bases in infinite families of quartic extensions of quadratic field, JP J. Algebra Number Theory Appl. 29 (2013), 31-43.
  10. [10] HEUBERGER, C.: All solutions to Thomas family of Thue equations over imaginary quadratic number fields, J. Symbolic Comput. 41 (2006), 980-998.10.1016/j.jsc.2006.05.001
  11. [11] HEUBERGER, C.: All solutions to Thomas family of Thue equations over imaginary quadratic number fields. Online resources, 2006, http://www.opt.math.tu-graz.ac.at/cheub/publications/thuerel-hyper-online.html10.1016/j.jsc.2006.05.001
  12. [12] HEUBERGER, C.-PETHŐ, A.-TICHY, R. F.: Thomas family of Thue equations over imaginary quadratic fields, J. Symbolic Comput. 34 (2002), 437-449.10.1006/jsco.2002.0568
  13. [13] KIRSCHENHOFER, P.-LAMPL, C. M.-THUSWALDNER, J.: On a parameterized family of relative Thue equations Publ. Math. (Debrecen) 71 (2007) 101-139.
  14. [14] NARKIEWICZ, W.: Elementary and Analytic Theory of Algebraic Numbers (2nd ed.). Springer, Berlin, 1974.
  15. [15] SHANKS, D.: The simplest cubic fields, Math. Comput. 28 (1974), 1137-1152.10.1090/S0025-5718-1974-0352049-8
  16. [16] WASHINGTON, L. C.: Class numbers of the simplest cubic fields, Math. Comp. 48 (1987), 371-384.10.1090/S0025-5718-1987-0866122-8
DOI: https://doi.org/10.1515/tmmp-2015-0041 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 59 - 66
Submitted on: Oct 13, 2015
Published on: Feb 19, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2016 István Gaál, László Remete, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.