Have a personal or library account? Click to login
Investigation on the use of crushed waste of ceramic tiles and clay brick as aggregate in dune sand based mortars Cover

Investigation on the use of crushed waste of ceramic tiles and clay brick as aggregate in dune sand based mortars

By: A. Ghrieb,  Y. Abadou and  R. Bustamante  
Open Access
|Jul 2021

References

  1. [1] Ghrieb A, Mitiche-Kettab R, Bali A (2014) “Stabilization and utilization of dune sand in road engineering”. Arabian Journal for Science and Engineering; 39 (3): 1517-1529. doi.org/10.1007/s13369-013-0721-z10.1007/s13369-013-0721-z
  2. [2] Ghrieb A, Mitiche-Kettab R (2013) “Stabilized Dune Sand for Road Foundation Layers - Case of the Dune Sand of the Region of Djelfa (Algeria)”. Applied Mechanics and Materials. 319: 263-277. doi. 10.4028/www.scientific.net/AMM.319.263
  3. [3] Capdessus H, Chauvin JJ (1973) “Traitement des sables des Landes”. Bulletins de Liaison de Laboratoire des Ponts et Chaussées.; 67 : 85-103.
  4. [4] Al-Abdul Wahhab HI, Asi IM. (1997) “Improvement of marl and dune sand for highway construction in arid areas” Building and Environment; 32 (3): 271-279. doi.org/10.1016/S0360-1323(96)00067-4
  5. [5] Khay SE, Neji J, Loulizi A (2011) ”Compacted dune sand concrete for pavement applications”. Proceedings of the Institution of Civil Engineers - Construction Materials; 164 (2): 87-93. doi.org/10.1680/coma.90004910.1680/coma.900049
  6. [6] Kettab R, Ghrieb A, Bali A. (2003) “A study of dune sand concrete for aeronautical runways” International symposia, advances in waste management and recycling; September 9-11; Dundee, Scotland.
  7. [7] Abadou Y, Mitiche-Kettab R, Ghrieb A (2016) “Ceramic waste influence on dune sand mortar performance” Construction and Building Materials. 125: 703–713. doi: 10.1016/j.conbuildmat.2016.08.08310.1016/j.conbuildmat.2016.08.083
  8. [8] Charman JH, West G. (2011) “Particle size distribution of dune sand from Libya” Quarterly Journal of Engineering Geology and Hydrogeology. 44 (2): 277-280. doi: 10.1144/1470-9236/09-04510.1144/1470-9236/09-045
  9. [9] Ay N, Ünal M. (2000)” The use of waste ceramic tile in cement production”. Cement and Concrete Research.; 30: 497-499. doi: 10.1016/S0008-8846(00)00202-710.1016/S0008-8846(00)00202-7
  10. [10] Binici H. (2007) “Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties”. Construction and Building Materials; 21: 1191–1197. doi.org/10.1016/j.conbuildmat.2006.06.00210.1016/j.conbuildmat.2006.06.002
  11. [11] Silva J, De Brito J, Veiga R. (2009) “Incorporation of fine ceramics in mortars” Construction and Building Materials.; 23: 556–564. doi.org/10.1016/j.conbuildmat.2007.10.014
  12. [12] J. Shao, J. Gao, Y. Zhao, X. Chen (2019) “Study on the pozzolanic reaction of clay brick powder in blended cement pastes” Construction and Building Materials 213; 209–215. doi.org/10.1016/j.conbuildmat.2019.03.307.
  13. [13] Pašalić S, Vučetić S, Zorić D, Ducman V, Ranogajec J. (2012) “Pozzolanic mortars based on waste building materials for the restoration of historical buildings”. Chemical Industry and Chemical Engineering Quarterly.; 18 (2): 147−154. doi: 10.2298/CICEQ110829056P10.2298/CICEQ110829056P
  14. [14] Y.F. Silva, David A. Lange, S. Delvasto (2019) “ Effect of incorporation of masonry residue on the properties of self-compacting concretes” Construction and Building Materials 196 277–283. doi.org/10.1016/j.conbuildmat.2018.11.132
  15. [15] Y. Ogawa, P.T. Bui, K. Kawai, R. (2020) Sato “effects of porous ceramic roof tile waste aggregate on strength development and carbonation resistance of steam-cured fly ash concrete”. Construction and Building Materials 236 117462. doi.org/10.1016/j.conbuildmat.2019.117462
  16. [16] Q. Liu, B. Li, J. Xiao, A. Singh (2020) “Utilization potential of aerated concrete block powder and clay brick powder from C&D waste” Construction and Building Materials 238 117721. doi.org/10.1016/j.conbuildmat.2019.117721
  17. [17] L.G. Li, Z.Y. Zhuo, J. Zhu, A.K.H. Kwan (2020)” Adding ceramic polishing waste as paste substitute to improve sulphate and shrinkage resistances of mortar. 362; 149-156 doi.org/10.1016/j.powtec.2019.11.117.10.1016/j.powtec.2019.11.117
  18. [18] Vasiliki Pachta, Pinelopi Marinou, Maria Stefanidou (2018) ” Development and testing of repair mortars for floor mosaic substrates” Journal of Building Engineering 20 501–509. doi.org/10.1016/j.jobe.2018.08.019.
  19. [19] G.F. Huseien, Abdul R.M. Sam, K.W. Shah, J. Mirza (2020) “Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete” Construction and Building Materials 236 117574. doi.org/10.1016/j.conbuildmat.2019.117574.
  20. [20] NF EN 197-1; AFNOR standards organisation (2012) Cement - Part 1: composition, specifications and conformity criteria for common cements.
  21. [21] Bogue R.H (1955), Chemistry of Portland cement. New York (NY): Reinhold Publishing.10.1097/00010694-195504000-00014
  22. [22] Dreux G, Festa J. (1998) Nouveau guide du béton et de ses constituants. France : Eyrolles.
  23. [23] Chauvin JJ. (1987). Les sables, guide technique d’utilisation routière. France : ISTED.
  24. [24] FD P18-011; AFNOR standards organization (2009) Concrete - Definition and classification of chemicaly aggressive environments - Recommendations for concrete mix design.
  25. [25] NF P 94-056; AFNOR standards organization (1996): Soil: investigation and testing. Granulometric analysis. Dry sieving method after washing.
  26. [26] NF P 94-057; AFNOR standards organization (1992). Soils investingation and testing. Granulometric analysis. Hydrometer method.
  27. [27] NF EN 196-1, AFNOR standards organization (2006) “Methods of testing cement - Part 1: determination of strength”.
  28. [28] NF P18-452, AFNOR standards organization (1988) “Concretes - Measuring the flow time of concretes and mortars using a workabilitymeter
  29. [29] EN 1015-6, European Standard (1999) ‘‘Methods of test for mortar for masonry – Part 6: Determination of bulk density of fresh mortar’’, European Committee for Standardization (CEN).
  30. [30] EN 1015-10, European Standard (2000), ‘‘Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar’’, European Committee for Standardization (CEN)
  31. [31] EN 1015-18, European Standard (2003), ‘‘Methods of test for mortar for masonry – Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar’’, European Committee for Standardization (CEN).
  32. [32] EN 14146, European Standard (2004). Natural stone test methods. Determination of the dynamic elastic modulus of elasticity (by measuring the fundamental resonance frequency). European Committee for Standardization (CEN).
  33. [33] FE Pa 43, Test form (2010). Test of evaluation of the mechanical characteristics by ultra-sounds (in Portuguese). National Laboratory of Civil Engineering (LNEC), Lisbon; September 2010.
  34. [34] American Society for Testing and Materials (ASTM) C 267 (2003). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes.
  35. [35] Nazari A, Riahi S. (2011) “Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles”. Materials Science and Engineering; 528 (3): 1183-1191. doi.org/10.1016/j.msea.2010.09.098.10.1016/j.msea.2010.09.098
  36. [36] Bédérina M, Khenfer MM, Dheilly RM. Quéneudec M.(2005)”Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes”, Cement and Concrete Research; 35: 1172–1179. doi.org/10.1016/j.cemconres.2004.07.006
  37. [37] Neno C, De Brito J, R. Veiga (2014). Using Fine Recycled Concrete Aggregate for Mortar Production. Materials Research. 17: 168-177. doi.org/10.1590/S1516-14392013005000164
  38. [38] Penacho P. De Brito J, Veiga MR (2014). Physico-mechanical and performance characterization of mortars incorporating fine glass waste aggregate. Cement & Concrete Composites; 50: 47–59. doi.org/10.1016/j.cemconcomp.2014.02.007
  39. [39] Chauvin JJ, Grimaldi G, (1988) “Les bétons de sable“, Bull. Liaison Lab. Ponts et Chausseés.; 157: 9-15.
  40. [40] Attiogbe KE, Rizkallah HS. (1988) “Response of concrete to sulphuric acid attack”. ACI Materials Journal; 85 (6): 481–488.
  41. [41] Fattuhi NI, Hughes BP. (1988) “SRPC and modified concretes subjected to severe sulphuric acid attack”. Magazine of Concrete Research; 40 (144): 159–166. doi.org/10.1680/macr.1988.40.144.159
  42. [42] Sata V, Sathonsaowaphak A, Chindaprasirt P. (2012) “Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack”. Cement and Concrete Composites, 34: 700–708. doi:10.1016/j.cemconcomp.2012.01.010.10.1016/j.cemconcomp.2012.01.010
DOI: https://doi.org/10.1515/sspjce-2021-0006 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 67 - 86
Published on: Jul 12, 2021
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 A. Ghrieb, Y. Abadou, R. Bustamante, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.