Have a personal or library account? Click to login
Investigation of the use of various materials for the construction of an enthalpy exchanger Cover

Investigation of the use of various materials for the construction of an enthalpy exchanger

Open Access
|Dec 2020

References

  1. [1] Directive of the European Parliament. (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Available online: http://data.europa.eu/eli/dir/2018/844/oj (acces 10. october 2020).
  2. [2] Airaksinen, M. (2011). Energy Use in Day Care Centers and Schools. Energies 2011, 4, 998-1009.10.3390/en4070998
  3. [3] Steen Englund, J.; Cehlin, M.; Akander, J.; Moshfegh, B. (2020). Measured and Simulated Energy Use in a Secondary School Building in Sweden—A Case Study of Validation, Airing, and Occupancy Behaviour. Energies 2020, 13, 2325.10.3390/en13092325
  4. [4] Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M.; Imran. (2020). Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms. Energies 2020, 13, 4363.10.3390/en13174363
  5. [5] Ruiz, G.R.; Bandera, C.F. (2017). Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587.10.3390/en10101587
  6. [6] Wang, W.; Shan, X.; Hussain, S.A.; Wang, C.; Ji, Y. (2020). Comparison of Multi-Control Strategies for the Control of Indoor Air Temperature and CO2 with OpenModelica Modeling. Energies 2020, 13, 4425.10.3390/en13174425
  7. [7] Bahramnia, P.; Hosseini Rostami, S.M.; Wang, J.; Kim, G.-J. (2019). Modeling and Controlling of Temperature and Humidity in Building Heating, Ventilating, and Air Conditioning System Using Model Predictive Control. Energies 2019, 12, 4805.10.3390/en12244805
  8. [8] Dall’O’, G.; Belli, V.; Brolis, M.; Mozzi, I.; Fasano, M. (2013). Nearly Zero-Energy Buildings of the Lombardy Region (Italy), a Case Study of High-Energy Performance Buildings. Energies 2013, 6, 3506-3527.10.3390/en6073506
  9. [9] Cho, K.; Cho, D.; Kim, T. (2020). Effect of Bypass Control and Room Control Modes on Fan Energy Savings in a Heat Recovery Ventilation System. Energies 2020, 13, 1815.10.3390/en13071815
  10. [10] Bendic, V.; Dobrotă, D. (2018). Theoretical and Experimental Contributions on the Use of Smart Composite Materials in the Construction of Civil Buildings with Low Energy Consumption. Energies 2018, 11, 2310.10.3390/en11092310
  11. [11] The European parliament (2019) COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE OF THE REGIONS: The European Green Deal. COM/2019/640.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN
  12. [12] Available online: https://ourworldindata.org/co2/country/bhutan?country=~BTN.
  13. [13] European Commission′s. (2014). European Commission′s regulation No. 1253/2014 from 7 July 2014, implementing the directive 2009/125/ES of the European Parliament and of the Council [3] concerning the eco-design of ventilation units. Available online: https://eurlex.europa.eu/legal-content/GA/TXT/?uri=CELEX%3A32014R1253
  14. [14] Ding, Z.; Liu, R.; Li, Z.; Fan, C. A (2020). Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management. Energies 2020, 13, 4621.10.3390/en13184621
  15. [15] Rosato, A.; Guarino, F.; Filomena, V.; Sibilio, S.; Maffei, L. (2020). Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study. Energies 2020, 13, 3948.10.3390/en13153948
  16. [16] Dong, J.; Winstead, C.; Nutaro, J.; Kuruganti, T. (2018). Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings. Energies 2018, 11, 2427.10.3390/en11092427
  17. [17] Kim, N.-K.; Shim, M.-H.; Won, D. (2018). Building Energy Management Strategy Using an HVAC System and Energy Storage System. Energies 2018, 11, 2690.10.3390/en11102690
  18. [18] Kassai, M.; Al-Hyari, L. (2019). Investigation of Ventilation Energy Recovery with Polymer Membrane Material-Based Counter-Flow Energy Exchanger for Nearly Zero-Energy Buildings. Energies 2019, 12, 1727.10.3390/en12091727
  19. [19] Zhang, L.; Zhang, Y.F. (2016). Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory. Energies 2016, 9, 24.10.3390/en9010024
  20. [20] Zhang, L.; Zhang, Y.-F. (2014). Research on Energy Saving Potential for Dedicated Ventilation Systems Based on Heat Recovery Technology. Energies 2014, 7, 4261-4280.10.3390/en7074261
  21. [21] De Antonellis, S.; Intini, M.; Joppolo, C.M.; Leone, C. (2014). Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems. Energies 2014, 7, 7348-7367.10.3390/en7117348
  22. [22] Al-Hyari, L .; Kassai, M. (2020). Development and Experimental Validation of TRNSYS Simulation Model for Heat Wheel Operated in Air Handling Unit. Energie 2020, 13, 4957.10.3390/en13184957
  23. [23] Fanger, P.O. (1970). Thermal comfort. Analysis and applications in environmental engineering. In Thermal Comfort. Analysis and Applications in Environmental Engineering. Danish Technical Press: Copenhagen, Denmark.
  24. [24] Gładyszewska-Fiedoruk, K.; Zhelykh, V.; Pushchinskyi, A. (2019). Simulation and Analysis of Various Ventilation Systems Given in an Example in the Same School of Indoor Air Quality. Energies 2019, 12, 2845.10.3390/en12152845
  25. [25] Mjörnell, K.; Johansson, D.; Bagge, H. (2019). The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in Apartments. Energies 2019, 12, 4454.10.3390/en12234454
  26. [26] Chyský, J., and K. Hemzal. (1993). Větrání a klimatizace.Bolit.
  27. [27] Székyová, Marta, Karol Ferstl, and Richard Nový. (2004). Vetranie a klimatizácia. Jaga group.
  28. [28] Vyhláška Ministerstva zdravotníctva Slovenskej republiky č. 259/2008 Z. z. o podrobnostiach o požiadavkách na vnútorné prostredie budov a o minimálnych požiadavkách na byty nižšieho štandardu a na ubytovacie zariadenia. (č. 210/2016 Z. z., 124/2017 Z. z.). Official publication: Zbierka zákonov SR; Number: 105; Publication date: 17/07/2008
  29. [29] Recknagel, Sprenger, Schramek. (1997). Taschenbuch für Heizung+ Klimatechnik. 67. vydanie.
  30. [30] ASTME96. (2000). American Standard Test Methods for Water Vapor Transmission of Materials, American Society for Testing and Materials, pp. 842-849.
  31. [31] Nasif, Mohammad Shakir, Graham L. Morrison, and Masud Behnia. (2005). Heat and mass transfer in air to air enthalpy heat exchangers.” Proceedings of the 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics. Matsushima, Japan.
  32. [32] Yunus A. Çengel, Afshin J. Ghajar. (2011). Heat and mass transfer fundamentals and applications. McGraw-700 Hill Education 701. 52.
  33. [33] Koester S.M., (2016). Membrane-based Enthalpy Exchagers, Von der Fakult¨at fur Maschinenwesen ¨ der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissen schaften genehmigte Dissertation.
DOI: https://doi.org/10.1515/sspjce-2020-0021 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 75 - 94
Published on: Dec 31, 2020
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Pavol Kozák, Danica Košičanová, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.