Have a personal or library account? Click to login
Equilibrium isotherm studies of copper and zinc removal from model solutions using natural and alkaline treated hornbeam sawdust Cover

Equilibrium isotherm studies of copper and zinc removal from model solutions using natural and alkaline treated hornbeam sawdust

Open Access
|Dec 2020

References

  1. [1] Pavolová, H., Lacko, R., Hajduová, Z., Šimková, Z., & Rovňák, M. (2020). The Circular Model in Disposal with Municipal Waste. A Case Study of Slovakia. International Journal of Environmental Research and Public Health, 17(6), 1839. https://doi.org/10.3390/ijerph1706183910.3390/ijerph17061839
  2. [2] Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-910.1007/s10311-018-0785-9
  3. [3] Očenášová, M., Seňová, A., Pavolová, H., Rovňák, M., & Muchová, M. S. (2020). A Systematic Approach to Occupational Safety and Health Focusing on Prevention of Damaging Aspects and Risk Categories in Mining Company. In New Approaches in Management of Smart Manufacturing Systems (pp. 187-206). Springer, Cham. https://doi.org/10.1007/978-3-030-40176-4_1210.1007/978-3-030-40176-4_12
  4. [4] Božić, D., Gorgievski, M., Stanković, V., Štrbac, N., Šerbula, S., & Petrović, N. (2013). Adsorption of heavy metal ions by beech sawdust – Kinetics, mechanism and equilibrium of the process. Ecological Engineering, 58, 202–206. https://doi.org/10.1016/j.ecoleng.2013.06.03310.1016/j.ecoleng.2013.06.033
  5. [5] SR Government Regulation 269/2010 Coll. which stipulates criteria for achieving good water balance – limit values for zinc and copper discharged waste water
  6. [6] Abdel-Ghani, N. T., El-Chaghaby, G. A., & Helal, F. S. (2013). Simultaneous removal of aluminum, iron, copper, zinc, and lead from aqueous solution using raw and chemically treated African beech wood sawdust. Desalination and Water Treatment, 51(16–18), 3558–3575. https://doi.org/10.1080/19443994.2012.75080610.1080/19443994.2012.750806
  7. [7] Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4), 387–419. https://doi.org/10.2166/wrd.2016.10410.2166/wrd.2016.104
  8. [8] Pavan Kumar, G. V. S. R., Malla, K. A., Yerra, B., & Srinivasa Rao, K. (2019). Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Applied Water Science, 9(3), 44. https://doi.org/10.1007/s13201-019-0924-x10.1007/s13201-019-0924-x
  9. [9] Tribedia, P., Singh, S., & Pandey, L. (2015). Removal of zinc from synthetic waste water by saw dust as an adsorbent. International Journal of Innovative Science, Engineering & Technology, 2(6), 120-127.
  10. [10] Meunier, N., Laroulandie, J., Blais, J. F., & Tyagi, R. D. (2003). Cocoa shells for heavy metal removal from acidic solutions. Bioresource Technology, 90(3), 255–263. https://doi.org/10.1016/S0960-8524(03)00129-910.1016/S0960-8524(03)00129-9
  11. [11] Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122–131. https://doi.org/10.1016/j.cej.2010.12.01010.1016/j.cej.2010.12.010
  12. [12] Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6(4), 533–540. https://doi.org/10.1016/S1093-0191(01)00079-X10.1016/S1093-0191(01)00079-X
  13. [13] Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z. (2016). Mono/competitive adsorption of Arsenic(III) and Nickel(II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213–221. https://doi.org/10.1016/j.jtice.2015.07.00710.1016/j.jtice.2015.07.007
  14. [14] Moubarik, A., & Grimi, N. (2015). Valorization of olive stone and sugar cane bagasse byproducts as biosorbents for the removal of cadmium from aqueous solution. Food Research International, 73, 169–175. https://doi.org/10.1016/j.foodres.2014.07.05010.1016/j.foodres.2014.07.050
  15. [15] Krishnani, K. K., Meng, X., Christodoulatos, C., & Boddu, V. M. (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials, 153(3), 1222–1234. https://doi.org/10.1016/j.jhazmat.2007.09.11310.1016/j.jhazmat.2007.09.113
  16. [16] Holub, M., & Balintova, M. (2014). Using of zeolite for copper and zinc removal under acidic conditions. Pollack Periodica, 9, 141–149. https://doi.org/10.1556/Pollack.9.2014.2.1410.1556/Pollack.9.2014.2.14
  17. [17] Shin, E. W., Karthikeyan, K. G., & Tshabalala, M. A. (2007). Adsorption mechanism of cadmium on juniper bark and wood. Bioresource Technology. Vol. 98 (2007): Pages 588-594.https://www.fs.usda.gov/treesearch/pubs/2710510.1016/j.biortech.2006.02.024
  18. [18] Demcak, S., Balintova, M., Demcakova, M., Csach, K., Zinicovscaia, I., Yushin, N., & Frontasyeva, M. (2019). Effect of alkaline treatment of wooden sawdust for the removal of heavy metals from aquatic environments. DESALINATION AND WATER TREATMENT, 155, 207–215. https://doi.org/10.5004/dwt.2019.2405310.5004/dwt.2019.24053
  19. [19] Memon, S. Q., Memon, N., Solangi, A. R., & Memon, J.-R. (2008). Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, 140(1–3), 235–240. https://doi.org/10.1016/j.cej.2007.09.04410.1016/j.cej.2007.09.044
  20. [20] Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95(1–2), 137–152. https://doi.org/10.1016/S0304-3894(02)00089-410.1016/S0304-3894(02)00089-4
  21. [21] Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141(1), 77–85. https://doi.org/10.1016/j.jhazmat.2006.06.09510.1016/j.jhazmat.2006.06.095
  22. [22] Bulut, Y., & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19(2), 160–166. https://doi.org/10.1016/S1001-0742(07)60026-610.1016/S1001-0742(07)60026-6
  23. [23] Kovacova, Z. (2019). Study of zinc removal from water solutions using hornbeam wooden sawdust. IOP Conference Series: Materials Science and Engineering, 566, 012019. https://doi.org/10.1088/1757-899X/566/1/01201910.1088/1757-899X/566/1/012019
  24. [24] Bodirlau, R., & Teaca, C. (2009). Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. 54, 93–104.
  25. [25] Langmuir, I. (1918). THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a00410.1021/ja02242a004
  26. [26] Freundlich, H.M. (1906) Over the Adsorption in Solution. Journal of Physical Chemistry A, 57, 385-470.
  27. [27] Tempkin, M. J., & Pyozhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochim URSS 12, 217-222.
  28. [28] Dubinin, M.M. and Radushkevich, L.V. (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  29. [29] Owen, N. L., & Thomas, D. W. (1989). Infrared Studies of “Hard” and “Soft” Woods. Applied Spectroscopy, 43(3), 451–455. https://doi.org/10.1366/000370289420276010.1366/0003702894202760
  30. [30] Zhu, G., Xing, X., Wang, J., & Zhang, X. (2017). Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon. Journal of Materials Science, 52(13), 7664–7676. https://doi.org/10.1007/s10853-017-1055-010.1007/s10853-017-1055-0
  31. [31] Demcak, S., Balintova, M., Hurakova, M., Frontasyeva, M. V., Zinicovscaia, I., & Yushin, N. (2017). Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nova Biotechnologica et Chimica, 16(1), 26–31. https://doi.org/10.1515/nbec-2017-000410.1515/nbec-2017-0004
DOI: https://doi.org/10.1515/sspjce-2020-0016 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 37 - 47
Published on: Dec 31, 2020
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Zdenka Kováčová, Štefan Demčák, Magdaléna Bálintová, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.