Have a personal or library account? Click to login
Indoor and Outdoor Measurements of Particulate Matter Concentrations: A Case Study Košice-Sever, Slovakia Cover

Indoor and Outdoor Measurements of Particulate Matter Concentrations: A Case Study Košice-Sever, Slovakia

Open Access
|Nov 2020

References

  1. [1] Fromme, H., Diemer, J., Dietrich, S., Cyrys, J, Heinrich, J., Lang, W., Kiranoglu, M. & Twardella, D. (2008) Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air, Atmos Environ. vol. 42, pp. 6597–6605.10.1016/j.atmosenv.2008.04.047
  2. [2] Dedele, A. & Miskinyte, (2019) A. Seasonal and site-specific variation in particulate matter pollution in Lithuania. Atmos Pollut Res. vol. 10, pp. 768–775.10.1016/j.apr.2018.12.004
  3. [3] Karri, R.R., Heibati, B., Yusup, Y., Rafatullah, M., Mohammadyan, M. & Sahu, J.N. (2018) Modeling airborne indoor and outdoor particulate matter using genetic programming. Sustain. Cities Soc. vol. 43, pp. 395–405.10.1016/j.scs.2018.08.015
  4. [4] Faria, T., Martins, V., Correira, C., Canha, N., Diaouli, E., Manousakas, M., Eleftheriadis, K. & Almeida, S.M. (2020) Children’s exposure and dose assessment to particulate matter in Lisbon. Build Environ, 106666.10.1016/j.buildenv.2020.106666
  5. [5] The EPA document. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100RQ5N.PDF?Dockey=P100RQ5N.PDF (accessed on 06 May 2020).
  6. [6] Vilcekova, S., Estokova, A, Kridlova Burdova, E. & Budaiova, Z. (2017) Investigation of particulate matter concentration in offices, Fresen Environ Bull. vol., 26(2), pp. 1225–1233.
  7. [7] EEA Report No 13/2017 “Air quality in Europe—2017 report” presents an updated analysis of air quality and its impacts, based on official data from more than 2,500 monitoring stations across Europe in 2015. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2017 (accessed on 20 January 2020).
  8. [8] Branis, M., Rezacova, P. & Domasova, M. (2005) The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in classroom; Environ Res. vol. 99, pp. 143–149.10.1016/j.envres.2004.12.001
  9. [9] Nunes, R.A.O., Branco, P.T.B.S., Alvim-Ferraz, M.C.M., Martings, F.G. & Sousa, S.I.V. (2015) Particulate matter in rural and urban nursery school in Portugal. Environ Pollut. vol. 202, pp. 7–16.10.1016/j.envpol.2015.03.00925795175
  10. [10] Fabbri, K. & Pretelli, M. (2014) Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesene, Italy, UNESCO Memory of the World. Energ Buildings. vol. 76, pp. 15–31.10.1016/j.enbuild.2014.02.051
  11. [11] Catalina, T. & Iordache, V. (2012) IEQ assessment on school in the design stage. Build Environ. vol. 49, 2012, pp. 129–140.10.1016/j.buildenv.2011.09.014
  12. [12] Adesina, J.A., Piketh, S.J., Ohekwana, M., Burger, R., Language, B. & Mkhatshwa, G. (2020) Contrasting indoor and ambient particulate matter concentrations and thermal comfort in coal and non-coal burning households at South Africa Highveld. Sci. Total Environ. vol. 699, pp. 134403.10.1016/j.scitotenv.2019.13440331678873
  13. [13] Sangiorgi, G., Ferrero, L., Ferrini B.S., Lo Porto C., Perrone, M.G., Zangrando, R., Gambaro, A., Lazzati, Z. & Borzacchini, E. (2014) Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos Environ. vol. 65, pp. 205–214.10.1016/j.atmosenv.2012.10.050
  14. [14] Cesar I.A., Teodoro, A.C., Torres, N. & Vivanco, V. (2019) Assessment of remote sensing data to model PM10 estimation in cities with a low number of air quality stations: a case of study in Quito, Ecuador. Environments, vol. 6(85), pp. 1–15.10.3390/environments6070085
  15. [15] Penkała, M., Ogrodnik, P. & Rogula-Kozłowska, W. (2018) Particulate matter from the road surface abrasion as a problem of non-exhaust emission control, Environments, vol. 5(9), pp. 1–13.10.3390/environments5010009
  16. [16] Sun, Z., Liu, C. & Zhang, Y. (2019) Evaluation of a steady-state method to estimate indoor PM2.5 concentration of outdoor origin, Build Environ. vol. 161, 106243.10.1016/j.buildenv.2019.106243
  17. [17] Xia, T. & Chen, C. (2019) Differentiating between indoor exposure to PM2.5 of indoor and outdoor origin using time-resolved monitoring data. Build Environ. vol. 147, pp. 528–539.10.1016/j.buildenv.2018.10.046
  18. [18] WHO. Available online: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019 (accessed on 20 January 2020).
  19. [19] Li, H., Fang, C.H.Y., Shi, W., Gurusamy, S., Li, S., Krishnan, M.N. & George, S. (2015) Size and site dependent biological hazard potential of particulate matters collected from different heights at the vicinity of a building construction. Toxicol Lett. vol. 238, pp. 20–29.10.1016/j.toxlet.2015.08.00226253280
  20. [20] Razalia, N.Y.Y., Latifb, M.T., Dominick, D., Mohamad, N., Sulaimand, F. R. & Srithawirate, T. (2015) Concentration of particulate matter, CO and CO2 in selected schools in Malaysia Author links open overlay panel. Build Environ. vol. 87, pp. 108–116.10.1016/j.buildenv.2015.01.015
  21. [21] Braniš, M. & Šafránek, J. (2011) Characterization of coarse particulate matter in school gyms. Environ Res. vol. 111(4), pp. 485–491.10.1016/j.envres.2011.03.01021458792
  22. [22] Goyal, D.R. & Kumar, P. (2013) Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix-use commercial building in megacity. Air Qual Atmos Helth. vol. 6, pp. 747–757.10.1007/s11869-013-0212-0
  23. [23] Decree of the Ministry of Health of the Slovak Republic No. 259/2008 about details of the requirements for the indoor environment of buildings and the minimum requirements for lower-standard apartments and accommodation
  24. [24] Decree of the Ministry of Environment of the Slovak Republic No. 244/2016 of the Slovak Republic on air quality https://www.noveaspi.sk/products/lawText/1/86985/1/2
  25. [25] Wang, Z. & Yu, Z. (2017) PM2.5 and ventilation in a passive residential building, Procedia Eng. vol. 205, pp. 2646–3653.10.1016/j.proeng.2017.10.226
  26. [26] Sharma, R. & Balasubramanian, R. (2019) Assessment and mitigation of indoor human exposure to fine particulate matter (PM2.5) of outdoor origin in naturally ventilated residential apartments: a case study. Atmos Environ. vol. 212, pp. 163–171.10.1016/j.atmosenv.2019.05.040
  27. [27] Wallis, S.L., Hernandey, G., Pozner, D., Birchmore, R. & Berry, T. (2019) Particulate matter in residential buildings in New Zealand: part I. Variability of particle transport into unoccupied spaces with mechanical ventilation. Atmos Environ. vol. X2, pp. 1–9.10.1016/j.aeaoa.2019.100024
  28. [28] Clements, N., Keady, P., Emerson, J.B., Fierer, N. & Miller, S.L. (2018) Seasonal variability of airborne particulate matter and bacterial concentrations in Colorado homes. Atmosphere. vol. 9(4), p. 133.10.3390/atmos9040133
  29. [29] Monn, Ch., Fuchs, A., Högger, D., Junker, D., Kogelschatz, D., Roth, N. & Wanner, H.-U. (1997) Particulate matter less than 10 μm (PM10) and fine particles less than 2.5 μm (PM2.5): relationships between indoor, outdoor and personal concentrations. Sci Total Environ. vol. 208 (1–2), pp. 15–21.10.1016/S0048-9697(97)00271-4
DOI: https://doi.org/10.1515/sspjce-2020-0008 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 77 - 88
Published on: Nov 24, 2020
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Eva Krídlová Burdová, Silvia Vilčeková, Peter Kapalo, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.