[8] Okochi, H., Kameda, H., Hasegawa, S. I., Saito, N., Kubota, K., & Igawa, M. (2000). Deterioration of concrete structures by acid deposition-an assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmos. Environ. 34(18), 2937-2945. DOI: 10.1016/S1352-2310(99)00523-3.10.1016/S1352-2310(99)00523-3
[10] Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 121, 1-18. DOI: 10.1016/j.jclepro.2016.02.013.10.1016/j.jclepro.2016.02.013
[11] Slovak Office of Standards, Metrology and Testing. (2017). Concrete. Specification, performance, production and conformity. STN EN 206+A1. Bratislava.
[12] Slovak Office of Standards, Metrology and Testing. (1989). Determination of moisture content, absorptivity and capillarity of concrete. STN 73 1316. Bratislava.
[13] Estokova, A., Smolakova, M., & Luptakova, A. (2018). Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium. Buildings 8(1), 9. DOI: 10.3390/buildings8010009.10.3390/8010009