Have a personal or library account? Click to login
Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge Cover

Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

Open Access
|Jul 2017

References

  1. [1] I. Nikolič et al. (2012). Geopolymerization of fly ash as a possible solution for stabilization of used sandblasting grit. Zaštita Materiala. 53, 243-246. UDC: 504.3.056.
  2. [2] J. Davidovits. (1994). High-Alkali Cements for 21st Century Concretes. Concrete Technology, Past, Present and Future. ACI SP 144, 383-397.
  3. [3] L. Y. Huang, D. W. Li, Y. C. Shiau, S. Li & K. X. Liu. (2015). Preparation and properties of geopolymer from blast furnace slag. Materials Research Innovations. 19(10), 413-419. DOI: 10.1179/1432891715Z.0000000002210.10.1179/1432891715Z.0000000002210
  4. [4] N. T. Ravindra, S. Ghosh. (2009). Effect of mix composition on compressive strength and microstructure of fly ash based geopolymer composites. ARPN Journal of Engineering and Applied Sciences. 4(4), 68-73.
  5. [5] M. A. Villaquirán-Caicedo, R. Mejía-de Gutiérrez. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA. 82 (194), 104-110. DOI: 10.15446/dyna.v82n194.46352.10.15446/dyna.v82n194.46352
  6. [6] P. Rovnaník, K. Šafránková. (2016). Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 9(7), 535. DOI: 10.3390/ma9070535.10.3390/ma9070535
  7. [7] N. Marjanović, M. Komljenović, Z. Baščarević, V. Nikolić. (2014). Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation. Construction and Building Materials. 57, 151-162. DOI: 10.1016/j.conbuildmat.2014.01.095.10.1016/j.conbuildmat.2014.01.095
  8. [8] B. V. Rangan. (2008). Fly ash-based geopolymer concrete. Research Report GC 4. Curtin University of Technology. Engineering Faculty. Perth, Australia.10.1201/9781420007657.ch26
  9. [9] A. Palomo, M. W. Grutzeck, M. T. Blanco. (1999). Alkali-activated fly ashes-Cement for the future. Cement and Concrete Research. 29, 1323-1329. DOI: 10.1016/S0008-8846(98)00243-9.10.1016/S0008-8846(98)00243-9
  10. [10] A. Palomo, A. Fernández-Jiménez. (2011). Alkaline activation, procedure for transforming fly ash into new materials. In World of Coal Ash (WOCA) Conference. May 9-12, 1-14, Denver USA.
  11. [11] D. Khale, R. Chaudhary. (2007). Mechanism of geopolymerization and factors influencing its development: a review. Journal of Materials Science. 42(3), 729-746. DOI: 10.1007/s10853- 006-0401-4.10.1007/s10853-006-0401-4
  12. [12] M. F. Ahmed, M. F. Nuruddin, N. Shafiq. (2011). Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. 5(2), 64-70.
  13. [13] M.P.C.M. Gunasekara, D.W. Law, S. Setunge. (2014). Effect of composition of fly ash on compressive strength of fly ash based geopolymer mortar. In 23rd Australasian Conference on the Mechanics of Structures and Materials, 9.-12. December, 113-118. Byron Bay, Australia: Southern Cross University.
  14. [14] D. Cross, J. Stephens, J. Vollmer. (2005). Field Trials of 100% Fly Ash Concrete. Concrete International. 27(09), 47-51.
  15. [15] Portland Cement Association. (2007). M. Thomas. Optimizing the Use of Fly Ash in Concrete. USA.
  16. [16] S.S. Jamkar, Y.M. Ghugal, S.V. Patankar. (2013). Effect of Fineness of Fly Ash on Flow and Compressive Strength of Geopolymer Concrete. The Indian Concrete Journal. 57-61.
  17. [17] D. Cresswell. (2016). Quarry Fines & Paper Sludge in Manufactured Aggregate. Case Study WRT 177 / WR0115. Smart Waste, UK.
  18. [18] B. González-Corrochano et al. (2016). Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production. Construction and Building Materials. 116. 252-262. DOI: 10.1016/j.conbuildmat.2016.04.095.10.1016/j.conbuildmat.2016.04.095
  19. [19] M. Želinková. (2014). The analysis of particle size of fly ashes - the possibility of obtaining fine particles by grinding. In Proceedings of Seminar of PhD. Students. 72-80. Kosice - TU.
  20. [20] S. Yazici, S. Arel. (2012). Effects of fly ash fineness on the mechanical properties of concrete. Sadhana. 37(3), 389-403. DOI: 10.1007/s12046-012-0083-3.10.1007/s12046-012-0083-3
  21. [21] F. Škvara, T. Jílek, L. Kopecký. (2005). Geopolymer materials based on fly ash. Ceramics -Silicate. 49(3), 195-204.
  22. [22] Slovak Office of Standards, Metrology and Testing, Bratislava. (2001). Methods of test for mortar for masonry. Part 10: Determination of dry bulk density of hardened mortar. STN EN 1015-10.
  23. [23] Slovak Office of Standards, Metrology and Testing, Bratislava. (1989). Determination of moisture, water absorption and capillarity of concrete. STN 731316.
  24. [24] Slovak Office of Standards, Metrology and Testing, Bratislava. (2001). Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar. STN EN 1015-11.
  25. [25] H.W. Nugteren et al. (2009). High Strength Geopolymers from Fractionated and Pulverized Fly Ash. In World of Coal Ash Conference, May 4-7. Lexington, USA.
  26. [26] M. Chollet, M. Horgnies. (2011). Analyses of the surfaces of concrete by Raman and FT-IR spectroscopies: comparative study of hardened samples after demoulding and after organic post-treatment. Surface and Interface Analysis 43, 714-725. DOI: 10.1002/sia.3548.10.1002/sia.3548
  27. [27] M.M.A.B. Abdullah, et al. (2012). Fly ash-based geopolymer lightweight concrete using foaming agent. Internationa Journal of Molecular Sciences 13, 7186-7198. DOI: 10.3390/ijms13067186.10.3390/ijms13067186339751922837687
  28. [28] A. Fernandez-Jimenez, A. Palomo. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research 35, 1984-1992. DOI: 10.1016/j.cemconres.2005.03.003.10.1016/j.cemconres.2005.03.003
  29. [29] A. Fernandez-Jimenez, A. Palomo. (2005). Mid-infrared spectroscopic studies of alkali activated fly ash structure. Microporous Mesoporous Mater. 86, 207-214. DOI: 10.1016/j.micromeso.2005.05.057.10.1016/j.micromeso.2005.05.057
  30. [30] M. Criado, A. Palomo, A. Fernandez-Jimenez. (2005). Alkali activation of fly ashes. Part I. Effect of curing conditions on the carbonation of the reaction products. Fuel. 84, 2048-2054. DOI: 10.1016/j.fuel.2005.03.030.10.1016/j.fuel.2005.03.030
  31. [31] M.Y.A. Mollah, W.Y.R. Schennach, D.L. Cocke. (2000). A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cement and Concrete Research 30, 267- 273. DOI: 10.1016/S0008- 8846(99)00243-4.10.1016/S0008-8846(99)00243-4
  32. [32] J. Bensted. (1976). Examination of the hydration of slag and pozzolanic cement by infrared spectroscopy. Cemento. 73, 209-214.
  33. [33] X. Guo, H. Shi, W.A. Dick. (2010). Compressive strength and microstructural characteristic of class C fly ash geopolymer. Cement and Concrete Research 32, 142-147. DOI: 10.1016/j.cemconcomp.2009.11.003.10.1016/j.cemconcomp.2009.11.003
DOI: https://doi.org/10.1515/sspjce-2017-0009 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 85 - 96
Published on: Jul 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Alena Sičáková, Nadežda Števulová, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.