Have a personal or library account? Click to login
The Use of Artificial Neural Networks to Assess the Capacity of Transport Measures Cover

The Use of Artificial Neural Networks to Assess the Capacity of Transport Measures

Open Access
|Jul 2015

References

  1. [1] Yegnanarayana B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.
  2. [2] Patterson D. W. (1998). Artificial neural networks: theory and applications. Prentice Hall PTR
  3. [3] Pastuszak Z. (26-02-2015). Zarządzanie logistyczne. Podstawowe definicje [in Polish], http://umcs.net.pl/index.php?act=Attach&type=post&id=2800
  4. [4] Chaberek M. (2006). Główne problemy badawcze w zakresie rozwoju logistyki na obszarze Unii Europejskiej, Zeszyty Naukowe Uniwersytetu Szczecińskiego, seria Ekonomiczne Problemy Usług nr 3, vol. 435, pp. 17-22 [in Polish]
  5. [5] Marszałek S. (2001). Ekonomika, organizacja i zarządzanie w transporcie, Wydawnictwo Śląskiej Wyższej Szkoły Zarządzania, Katowice [in Polish]
  6. [6] Rydzykowski W., Wojewódzka-Król K. (2002). Transport, Wydawnictwo Naukowe PWN, Warszawa [in Polish]
  7. [7] Woźniak K. (26-02-2015). System Wspomagania Decyzji [in Polish], http://mfiles.pl/pl/index.php/System_wspomagania_decyzji
  8. [8] Aronson J., Liang T., Turban E. (2005). Decision support systems and intelligent systems. Yoyakarta, Andi
  9. [9] Delen D., Sharda, R. (2008). Artificial neural networks in decision support systems. In Handbook on Decision Support Systems 1 (pp. 557-580). Springer Berlin Heidelberg.10.1007/978-3-540-48713-5_26
  10. [10] Bartkowski B. (26-02-2015). Sieci jednokierunkowe [in Polish], http://sknbo.ue.poznan.pl/neuro/ssn/pliki/czesc1.html
  11. [11] Lin S. M. (2013). Analysis of service satisfaction in web auction logistics service using a combination of fruit fly optimization algorithm and general regression neural network. Neural Computing and Applications, vol. 22(3-4), pp. 783-79110.1007/s00521-011-0769-1
  12. [12] He H. D., Lu W. Z., Xue Y. (2014). Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm. Building and Environment, vol. 78, pp. 111-11710.1016/j.buildenv.2014.04.011
  13. [13] Luo J. F., Ma T. S. (2013). An Integrated Predicting Model of New-Built Regional Logistics Center’s Demand Based on the Artificial Neural Network. Applied Mechanics and Materials, vol. 253, pp. 1512-151710.4028/www.scientific.net/AMM.253-255.1512
  14. [14] Frankowski Ł. (01-02-2011). Fast Artifical Neural Network. Opis biblioteki FANN. Bydgoszcz 2005 [in Polish], http://www.l0co.we-bpark.pl/edu/fann/fann_ref.pdf
  15. [15] Nissen S. (2012). Implementation of a fast artificial neural network library (FANN), 2003. Department of Computer Science University of Copenhagen (DIKU)
  16. [16] Nissen S. et al. (26-02-2015). FANN - Fast Artificial Neural Network Library. http://leenissen.dk/fann/wp
  17. [17] Skorupka D., Duchaczek A., Kamyk Z. (2011). Use of Artificial Neural Networks to Determine Class of Vehicle Load. Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, vol. 2, pp. 237-246, [In Polish]10.5604/01.3001.0002.2993
  18. [18] Duchaczek A., Skorupka D. (2011). Application of Artificial Neural Networks in Decision Support Systems in Logistics Management. Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, vol. 4, pp. 270-277, [In Polish].10.5604/01.3001.0002.3262
  19. [19] Hinet. (23.05.2011). HINET - Transport i Spedycja [in Polish]. http://www.hinet.com.pl/rodzaje.html
  20. [20] Support files of the program STATISTICA Sieci Neuronowe - version 6.0
  21. [21] Szaleniec M. (2008). Sieci Neuronowe i regresja wieloraka - czyli jak okiełznać złożoność w badaniach naukowych, In: Zastosowania statystyki i data miting w badaniach naukowych" (J.Wątroba, ed.), StatSoft, Kraków, pp.69-86 [in Polish]
  22. [22] Frydrychowicz W., Szymańska K. (2008). Applications of Artificial Neural Networks for Dynamical Dehavior of Non-standard Market Processes. Scientific Bulletin of Chelm Section of Mathematics and Computer Science, vol. 1, pp. 61-70, [in Polish]
  23. [23] Grzeszczyk T. A., (2003). Zintegrowana metoda prognozowania w zarzadzaniu przedsiębiorstwem, StatSoft, Kraków [in Polish]
  24. [24] Kasprowicz, T. (2000). Cost-time scheduling of construction works execution, J. Infrastructure Planning and Management, 660(IV-49).10.2208/jscej.2000.660_125
  25. [25] Kapliński, O., Janusz, L. (2006). Three phases of multifactor modelling of construction processes, Journal of Civil Engineering and Management, 12(2), 127-13410.3846/13923730.2006.9636384
  26. [26] Połoński, M. (2006). The analysis of the reliability of realization cost and investments, timelimits in Warsow. Electronic Journal of Polish Agricultural Universities Topic Civil Engineering, 9(4), #10.
  27. [27] Sobotka, A., Czarnigowska, A. (2005). Analysis of supply system models for planning construction project logistics. Journal of Civil Engineering and Management, 11(1), 73-82.10.3846/13923730.2005.9636335
  28. [28] Plebankiewicz E., Leśniak A. (2013). Overhead costs and profit calculation by Polish contractors. Technological and Economic Development of Economy, vol. 19.1, pp. 141-161. 10.3846/20294913.2012.763008
DOI: https://doi.org/10.1515/sspjce-2015-0005 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 47 - 56
Published on: Jul 1, 2015
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Artur Duchaczek, Dariusz Skorupka, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.