Have a personal or library account? Click to login
Flexural Fatigue performance of Alkali Activated Slag Concrete mixes incorporating Copper Slag as Fine Aggregate Cover

Flexural Fatigue performance of Alkali Activated Slag Concrete mixes incorporating Copper Slag as Fine Aggregate

Open Access
|Jul 2015

References

  1. [1] Roy D. (1999). Alkali-activated cements - opportunities and challenges. Cement and Concrete Research. Vol.29, no.2, pp.249-254.10.1016/S0008-8846(98)00093-3
  2. [2] Shi, C., Krivenko, P.V. and Roy, D. (2006). Alkali-activated cements and concretes. United Kingdom: Taylor Francis, Abingdon.10.4324/9780203390672
  3. [3] Talling, B. and Krivenko, P.V.(1997). Blast furnace slag - the ultimate binder. In: S. Chandra Editor. Waste materials used in concrete manufacturing. pp.235-289, Noyes Publications.10.1016/B978-081551393-3.50008-9
  4. [4] Van Deventer, J.S.J., Provis, J.L., Duxson, P. and Brice, D.G. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valorization. Vol. 1, no.1, pp.145-155.10.1007/s12649-010-9015-9
  5. [5] Al-Jabri, S.K., Makoto, H., Al-Oraimi, K.S. and Al-Saidy, H.S. (2009). Copper slag as sand replacement for high performance concrete. Cement and Concrete Research. Vol.31, no.7, pp.483-488.10.1016/j.cemconcomp.2009.04.007
  6. [6] Al-Jabri, S.K., Hisada, M., Al-Saidy, H.S., Al-Oraimi, K.S. (2009). Performance of high strength concrete made with copper slag as a fine aggregate. Construction and Building Materials. Vol. 23, pp.2132-2140.10.1016/j.conbuildmat.2008.12.013
  7. [7] Shi, C.J., Meyer, C. and Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resource Conservation and Recycling. Vol. 52, pp.1115-1120.10.1016/j.resconrec.2008.06.008
  8. [8] Shoya, M., Nagataki, S., Tomosawa, F., Sugita, S. and Sukinaga, Y.T. (1997). Freezing and thawing resistance of concrete with excessive bleeding and its improvement. In: Proceedings of the fourth CANMET/ACI International conference on durability of concrete. Vol.170, no. 45, pp.879-898, special publication.
  9. [9] Kumar, B. (2012). Properties of pavement quality concrete and dry lean concrete with copper slag as fine aggregate. International Journal of Pavement Engineering. first article, pp.1-6.
  10. [10] Hui, Mao-hua, Z. and Jin-ping, O. (2007). Flexural fatigue performance of concrete containing nano particles for pavements. International Journal of fatigue. Vol. 29. no 7, pp.1292-1301.10.1016/j.ijfatigue.2006.10.004
  11. [11] Lee, M.K. and Barr, B.I.G. (2004). An overview of the fatigue behavior of plain and fibre reinforced concrete. Cement Concrete Composites. Vol.26, pp. 299-305.10.1016/S0958-9465(02)00139-7
  12. [12] Jin-Keun, K and Yun-Yong, K. (1996). Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research. Vol. 26, no.10, pp. 1513-1523.10.1016/0008-8846(96)00151-2
  13. [13] Hsu, T.C.C. (1984). Fatigue and micro cracking of concrete. Materials and Structures.Vol.17, no.97, pp.51-54.10.1007/BF02474056
  14. [14] Wua, W., Weide, Z. and Guowei, M. (2010). Optimum content of copper slag as a fine aggregate in high strength concrete. Materials and Design. Vol. 31, no.6, pp.2878-2883.10.1016/j.matdes.2009.12.037
  15. [15] Wang, S.D. and Scrivener, K.L. (2003). 29Si and 27Al NMR study of alkali-activated slag. Cement and Concrete Research. Vol.33, no.5, pp.769-774.10.1016/S0008-8846(02)01044-X
  16. [16] Bernal, S.A., Provis, J.L., Mejía de Gutierrez, R. and Rose, V. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concrete Composites. Vol.33. no.1, 46-54.10.1016/j.cemconcomp.2010.09.004
  17. [17] Ramakrishnan, V., Meyer, C., Naaman, A.E., Zhao, G. and Fang,.L. (1996). Cyclic behaviour, fatigue strength, endurance limit and models for fatigue behaviour of FRC. In: Spon E, Spon FN, editors. High performance fibers reinforced cement composites, Vol.2, pp. 101-48.
  18. [18] Erdem, S. and Blankson, M. A. (2014). Chloride-Ion penetrability and mechanical analysis of high strength concrete with copper slag. International Journal of Engineering Research and Applications. Vol.4, no.5, pp.101-113.
  19. [19] Oh, B.H. (1991). Fatigue life distributions of concrete for various stress levels. ACI material Journal. Vol. 88, no. 2, pp.122-128.10.14359/1870
  20. [20] Mohammadi, Y. and Kaushik, S.K. (2005). Flexural fatigue life distributions of plain and fibrous concrete at various stress levels. Journal of Materials in Civil Engineering. Vol.17, no.6, pp.650-658. 10.1061/(ASCE)0899-1561(2005)17:6(650)
DOI: https://doi.org/10.1515/sspjce-2015-0001 | Journal eISSN: 1338-7278 | Journal ISSN: 1336-9024
Language: English
Page range: 7 - 18
Published on: Jul 1, 2015
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 B.M. Mithun, M.C. Narasimhan, Palankar Nitendra, A.U. Ravishankar, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.