Aaronson, S.(2006). Quantum computing since Democritus. Retrieved from http://www.scottaaronson.com/democritus/ (viewed October 31, 2016) (Lecture notes, Fall 2006).
Cobham, A. (1965). The intrinsic computational difficulty of functions In Proceedings of the Third International Congress for Logic, Methodology, and the Philosophy of Science (pp. 24-30). Amsterdam: North Holland.
Cook, S.(1971). The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing, 151-158.10.1145/800157.805047
Cook, S. (2006). The P versus NP problem. In J. A. James A. Carlson, A. Jaffe, & A. Wiles (Eds.), The millennium prize problems (pp. 87-106). Cambridge Mass.; Providence Rhode Island: Clay Mathematics Institute, American Mathematical Society. Retrieved from www.claymath.org/sites/default/files/pvsnp.pdf (viewed October 31, 2016)
Copeland, J. B. (2015). The Church-Turing thesis. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy Summer 2015 (ed.). http://plato.stanford.edu/archives/sum2015/entries/church-turing/ (viewed October 31, 2016).
Davis, E. & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9), 92-103. doi:10.1145/2701413
Davis, M. (Ed). (1965). The undecidable: Basic papers on undecidable propositions, unsolvable problems, and computable functions (1965, 2004 ed.). Hewlett, N.Y.: Raven Press. (An anthology of fundamental papers on undecidability and unsolvability, this classic reference opens with Gödel’s landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by Gödel, Church, Turing, and Post single out the class of recursive functions as computable by finite algorithms. 1965 edition.)
Davis, M. (2004). The myth of hypercomputation. In C. Teuscher (Ed.), Alan Turing: Life and legacy of a great thinker. Turing Festschrift. Berlin, Heidelberg: Springer-Verlag. Retrieved from https://www.researchgate.net/publication/243784599 doi:10.1007/978-3-662-05642-4 8
Dean,W. (2016). Computational complexity theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). http://plato.stanford.edu/archives/win2016/entries/computational-complexity/ (viewed October 31, 2016).
Eddington, A. S. (1948). The nature of the physical world (Electronic edition 2007 ed.; R. C. Henry, Ed.). Cambridge: Cambridge at the university press. Retrieved from henry.pha.jhu.edu/Eddington.2008.pdf (viewed October 31, 2016).
Edmonds, J. (1965a). Minimum partition of a matroid into independent subsets. Journal of Reaserch of the National Bureau of Standards-B. Mathematics and Mathematical Physics, 69, 67-72.10.6028/jres.069B.004
Gelertner, D. (2016, 24. November). Ein Geist aus Software. Frankfurter Allgemeine Zeitung. Retrieved from http://www.faz.net/aktuell/feuilleton/debatten/digitales-denken/kuenstliche-intelligenz-ein-geist-aus-software-1607431.html
Hartmanis, J. (1989). G¨odel, von Neumann, and the P =?NP problem. Bulletin of the European Association for Theoretical Computer Science, 38, 101-107.Retrieved from https://ecommons.cornell.edu/handle/1813/6910 (viewed October 31, 2016).
Hartmanis, J., & Stearns, R. (1965). On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117(5), 285-306.10.1090/S0002-9947-1965-0170805-7
Impagliazzo, R. & Wigderson, A. (1997). P = BPP if E requires exponential circuits: derandomizing the XOR lemma. In Stoc ’97 proceedings of the twentyninth annual acm symposium on theory of computing (pp. 220-229). New York: ACM. doi:10.1145/258533.258590
Krajewski, S. (2003). Twierdzenie G¨odla i jego interpretacje filozoficzne. Od mechanicyzmu do postmodernizmu. Warszawa: Instytut Filozofii i Socjologii PAN.
Litt, A., Eliasmith, C., Kroon, F. W., Weinstein, S. & Thagard, P. (2006). Is the brain a quantum computer? Cognitive Science, 30, 593-603.10.1207/s15516709cog0000_59
Marciszewski, W. (2004). Challenges for the logic of social research: To grasp rationality, to deal with complexity. Studies in Logic, Grammar and Rhetoric, 20(7), 17.
McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence (Tech. Rep.). Stanford, CA 94305: Computer Science Department, Stanford University.
McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics (5), 115-133.10.1007/BF02478259
Penrose, R.(1996). Beyond the doubting of a shadow. Psyche. Retrieved from http://psyche.csse.monash.edu.au/v2/psyche-2-23-penrose.html (electronic journal).
Post, E. (1965). Absolute unsolvable problems and relatively undecidable propositions - Account of an anticipation. In M. Davis (Ed.), The undecidable: Basic papers on undecidable propositions, unsolvable problems, and computable functions (pp. 338-433). Hewlett, N.Y.: Raven Press. (submitted to the American Journal of Mathematics in 1941, but published only in (M. Davis, 1965, pp. 338-433)).
Rotman, B. (2003, August). Will the digital computer transform classical mathematics? Philosophical Transactions of the Royal Society. Matehmatical, Physical and Engineering Sciences, 361(1809), 1675-1690. doi:10.1098/rsta.2003.1230
Sipser, M. (1992). The history and status of the P versus NP question. In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on theory of computing (pp. 603-618). New York: ACM.
Slot, C. F., & van Emde, P. (1984). On tape versus core: an application of space efficient perfect hash functions to the invariance of space. In ACM (Ed.), STOC ’84 Proceedings of the sixteenth annual ACM symposium on theory of computing (pp. 391-400). New York.10.1145/800057.808705
Turing, A. M. (1936-37). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42(Series 2), 230-265. Retrieved from http://www.abelard.org/turpap2/tp2-ie.asp10.1112/plms/s2-42.1.230
Turing, A.M. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathemactical Society, 2(1), 230.10.1112/plms/s2-42.1.230
Turing, A. M. (1948, July). Intelligent machinery (Tech. Rep.) National Physical Laboratory. Retrieved from http://www.AlanTuring.net/intelligentmachinery
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433-460. (Available on-line: http://cogprints.org/499/00/turing.html. Reprinted in (Turing, 1992a)).
Turing, A. M. (1952). Can automatic calculating machines be said to think? (Typescript of broadcast discussion in BBC Third Programme, 14 and 23 January 1952, between M.H.A. Newman, A.M. Turing, Sir Geoffrey Jefferson, R.B. Braithwaite).
Turing, A. M. (1969). Intelligent machinery. National Physical Laboratory Report, 1948. In B. Meltzer & D. Michie (Eds.), Machine intelligence 5 (pp. 3-23). Edinburgh: Edinburgh University Press. (Digital facsimile viewable at http://www.AlanTuring.net/intelligentmachinery)
van Emde, B. P. (1988, Aug.). Machine models and simulations (Revised version) (Tech. Rep. No. CT-88-05). University of Amsterdam: Institute for Language, Logic and Information. Retrieved from http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.pdf (viewed October 31, 2016).
van Emde, B. P. (1990). Machine models and simulations. In J. van Leeuwen (Ed.), Handbook of theoretical computer science (Vol. A: Algorithms and Complexity, pp. 1-66). Cambridge: MIT Press/Elsevier.
van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science. A multidyscyplinary journal 32(6), 939-984. Retrieved from http://onlinelibrary.wiley.com/doi/10.1080/03640210801897856/full (viewed October 31, 2016).