Have a personal or library account? Click to login
Application of Artificial Neural Networks and Principal Component Analysis to Predict Results of Infertility Treatment Using the IVF Method Cover

Application of Artificial Neural Networks and Principal Component Analysis to Predict Results of Infertility Treatment Using the IVF Method

Open Access
|Jan 2017

References

  1. Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W. R., Macintyre, et al. (1997) Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. The Lancet, 350(9076), 469–472.
  2. Buciński, A., Bączek, T., Krysiński, J., Szoszkiewicz, R., & Załuski, J. (2007). Clinical data analysis using artificial neural networks (ANN) and principal component analysis (PCA) of patients with breast cancer after mastectomy. Reports of Practical Oncology and Radiotherapy, 12(1), 9–17.10.1016/S1507-1367(10)60036-3
  3. Case, A. M. (2003). Infertility evaluation and management. Strategies for family physicians. Canadian Family Physician, 49, 1465–1472.
  4. Chen, D.-F., Ji, Q.-Ch., Zhao, L., & Zhang, H.-C. (2009). The Classification of Wine Based on PCA and ANN. In B. Cao, T.-F. Li, & C.-Y. Zhang. (Eds.), Advances in Intelligent and Soft Computing: Volume 62. Fuzzy Information and Engineering Volume 2 (pp. 647–655). Berlin Heidelberg: Springer.
  5. Dinç, E., Kanbur, M., & Baleanu, D. (2007). Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(2), 225–230.10.1016/j.saa.2006.11.018
  6. Elrharras, A., El Moukhlis, S., Saadane, R., Wahbi, M., & Hamdoun, A. (2015). FPGA-Based Fully Parallel PCA-ANN for Spectrum Sensing. Computer and Information Science, 8(1), 108–118.10.5539/cis.v8n1p108
  7. Gonen, L. D. (2016). Satisfaction with in vitro fertilization treatment: patients’ experiences and professionals’ perceptions. Fertility Research and Practice, 2(6). DOI: 10.1186/s40738-016-0019-410.1186/s40738-016-0019-4
  8. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.10.1148/radiology.143.1.7063747
  9. Hillier, T. A., Rousseau, A., Lange, C., Lépinay, P., Cailleau, M., Novak, M., Calliez, E., et al. (2006). Practical way to assess metabolic syndrome using a continuous score obtained from principal components analysis. Diabetologia, 49(7), 1528–1535.10.1007/s00125-006-0266-8
  10. Ioele, G., De Luca, M., Dinç, E., Oliverio, F., & Ragno, G. (2011). Artificial Neural Network Combined with Principal Component Analysis for Resolution of Complex Pharmaceutical Formulations. Chemical and Pharmaceutical Bulletin, 59(1), 35–4010.1248/cpb.59.35
  11. Jackson, J. E. (1991). A user’s guide to principal components analysis. New York: Wiley.10.1002/0471725331
  12. Jilani, T. A., Yasin, H., & Yasin, M. M. (2011). PCA-ANN for Classification of Hepatitis-C Patients. International Journal of Computer Applications, 14(7), 1–6.10.5120/1899-2530
  13. Jin-Mei, X., Xiao-Jian, W., & Ying-Jin, Y. (2007). Integration of wavelet transform with PCA and ANN for metabolomics data-mining. Metabolomics, 3, 531–537.10.1007/s11306-007-0090-2
  14. Jolliffe, I. T. (2002). Principal Components Analysis (2nd Ed.). Berlin, Germany: Springer.
  15. Massart, D. L., & Vander Heyden, Y. (2004a). From tables to visuals: principal component analysis, part 1. LC-GC Europe, 17(11), 586–591.
  16. Massart, D. L., & Vander Heyden, Y. (2004b). From tables to visuals: principal component analysis, part 2. LC-GC Europe, 18(2), 84–89.
  17. Merchant, R., Gandhi, G., & Allahbadia, G. N. (2011). In vitro fertilization/intracytoplasmic sperm injection for male infertility. Indian Journal of Urology, 27(1), 121–132.10.4103/0970-1591.78430
  18. Milewska, A. J., Jankowska, D., Citko, D., Więsak, T., Acacio, B., & Milewski, R. (2014). The use of principal component analysis and logistic regression in prediction of infertility treatment outcome. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 39(52), 7–23.10.2478/slgr-2014-0043
  19. Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009). Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial neural networks among patients of the Department of Reproduction and Gynecological Endocrinology. Ginekologia Polska, 80(12), 900–906.
  20. Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013a). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005–2010. Ginekologia Polska, 84(7), 609–614.10.17772/gp/1612
  21. Milewski, R., Milewska, A. J., Więsak, T., & Morgan, A. (2013b). Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using in the in vitro fertilization treatment Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 39–48.10.2478/slgr-2013-0033
  22. Morajda, J. (2000). Analiza głównych składowych jako metoda wstępnego przetwarzania danych dla sieci neuronowych. Zeszyty Naukowe, 551, 17–30.
  23. Oakley, L., Doyle, P., & Maconochie N. (2008). Lifetime prevalence of infertility and infertility treatment in the UK: results from a population based survey of reproduction. Human Reproduction, 23(2), 447–450.10.1093/humrep/dem369
  24. Pouliakis, A., Karakitsou, E., Margari, N., Bountris, P., Haritou, M., Panayiotides, J., Koutsouris, D., et al. (2016). Artificial Neural Networks as Decision Support Tools in Cytopathology: Past, Present, and Future. Biomedical Engineering and Computational Biology, 7, 1–18.10.4137/BECB.S31601
  25. Radwan, J. (2011). Epidemiologia niepłodności. In J. Radwan, & S. Wołczyński (Eds.), Niepłodność i rozród wspomagany (pp. 11–14). Poznań: Termedia.
  26. Rojas, R. (1996). Neural Networks: A Systematic Introduction. Berlin: Springer.10.1007/978-3-642-61068-4
  27. Siristatidis, C., Pouliakis, A., Chrelias, C., & Kassanos, D. (2011). Artificial intelligence in IVF: A need. Systems Biology in Reproductive Medicine, 57(4), 179–185.10.3109/19396368.2011.558607
  28. Tadeusiewicz, R. (1993). Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza.
  29. Wilkes, S., Chinn, D. J., Murdoch, A., & Rubin, G. (2009). Epidemiology and management of infertility: a population-based study in UK primary care. Family Practice, 26(4), 269–274.10.1093/fampra/cmp029
DOI: https://doi.org/10.1515/slgr-2016-0045 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 33 - 46
Published on: Jan 23, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2017 Robert Milewski, Dorota Jankowska, Urszula Cwalina, Anna Justyna Milewska, Dorota Citko, Teresa Więsak, Allen Morgan, Sławomir Wołczyński, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.