Have a personal or library account? Click to login
Multiresolution Analysis of EEG Signals Cover
Open Access
|Jan 2017

References

  1. Ali, Z., Elamvazuthi, I., Alsulaiman, M., & Muhammad, G. (2016). Detection of Voice Pathology using Fractal Dimension in a Multiresolution Analysis of Normal and Disordered Speech Signals. Journal of Medical Systems, 40(1), 1–10.10.1007/s10916-015-0392-2
  2. Banerjee, S., Gupta, R., & Mitra, M. (2012). Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement, 45(3), 474–487.10.1016/j.measurement.2011.10.025
  3. Gandhi, T., Panigrahi, B. K., & Anand, S. (2011). A comparative study of wavelet families for EEG signal classification. Neurocomputing, 74(17), 3051–3057.10.1016/j.neucom.2011.04.029
  4. Gawędzki, W., Socha, M., & Sławik, P. (2015). Dekompozycja sygnałów EEG w dziedzinie czasu przy zastosowaniu transformacji Hilberta-Huanga HHT. Przegląd Elektrotechniczny, 91, 33–36.
  5. Gentile, A., & Messina, A. (2003). On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams. International Journal of Solids and Structures, 40(2), 295–315.10.1016/S0020-7683(02)00548-6
  6. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., et al. (2000). Physiobank, physiotoolkit, and physionet. Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.10.1161/01.CIR.101.23.e215
  7. Guo, L., Rivero, D., & Pazos, A. (2010). Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods, 193(1), 156–163.10.1016/j.jneumeth.2010.08.030
  8. Hu, Q., He, Z., Zhang, Z., & Zi, Y. (2007). Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mechanical Systems and Signal Processing, 21(2), 688–705.10.1016/j.ymssp.2006.01.007
  9. Kitlas, A., Oczeretko, E., Laudański, P., & Laudański, T. (2010, August). Signal processing methods in the analysis of the uterine contractility. Paper presented at the 6th World Congress of Biomechanics (WCB 2010), Singapore.10.1007/978-3-642-14515-5_173
  10. Klonowski, W. (1997). Zastosowanie teorii układów nieliniowych do analizy sygnału EEG. X Krajowa Konferencja Naukowa: Biocybernetyka i Inżynieria Biomedyczna. Materiały naukowe, 2, 590–594.
  11. Kronland-Martinet, R., Morlet, J., & Grossmann, A. (1987). Analysis of sound patterns through wavelet transforms. International Journal of Pattern Recognition and Artificial Intelligence, 1(02), 273–302.10.1142/S0218001487000205
  12. Kumar, R., & Kumar, A. (2015). ECG signal compression algorithm based on joint-multiresolution analysis (J-MRA). Paper presented at the 2nd International Conference on Electronics and Communication Systems (ICECS).10.1109/ECS.2015.7124982
  13. Lee, S. H., & An, J. (2011). Quantitative EEG evaluation of multimedia intervention program for ADHD children. Paper presented at the Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies.10.1145/2093698.2093714
  14. Lou, X., & Loparo, K. A. (2004). Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 18(5), 1077–1095.10.1016/S0888-3270(03)00077-3
  15. Mallat, S. G. (1987). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation (University of Pennsylvania, Department of Computer and Information Science Technical Report No. MS-CIS-87-22).
  16. Mallat, S. G. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.10.1109/34.192463
  17. Mallat, S. G. (1999). A wavelet tour of signal processing. Academic press.
  18. Mirzaei, A., Ayatollahi, A., Gifani, P., & Salehi, L. (2010). EEG analysis based on wavelet-spectral entropy for epileptic seizures detection. Paper presented at the 3rd International Conference on Biomedical Engineering and Informatics.10.1109/BMEI.2010.5639894
  19. Muthuswamy, J., & Thakor, N. V. (1998). Spectral analysis methods for neurological signals. Journal of Neuroscience Methods, 83(1), 1–14.10.1016/S0165-0270(98)00065-X
  20. Pal, S., & Mitra, M. (2010). Detection of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method. Measurement, 43(2), 255–261.10.1016/j.measurement.2009.10.004
  21. Pinsky, M. A. (2002). Introduction to Fourier analysis and wavelets. Graduate Studies in Mathematics, Volume 102, American Mathematical Society.
  22. Ravanfar, S. A., Razak, H. A., Ismail, Z., & Monajemi, H. (2015). An improved method of parameter identification and damage detection in beam structures under flexural vibration using wavelet multi-resolution analysis. Sensors, 15(9), 22750–22775.10.3390/s150922750
  23. Rosenblatt, M., Figliola, A., Paccosi, G., Serrano, E., & Rosso, O. A. (2014). A Quantitative Analysis of an EEG Epileptic Record Based on Multiresolution Wavelet Coefficients. Entropy, 16(11), 5976–6005.10.3390/e16115976
  24. Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment. Massachusetts Institute of Technology.
  25. Stark, H.-G. (2005). Wavelets and signal processing: an application-based introduction. Springer Science & Business Media.
  26. Strambi, S.-k., Rossi, B., De Michele, G., & Sello, S. (2004). Effect of medication in Parkinson’s disease: a wavelet analysis of EMG signals. Medical Engineering & Physics, 26(4), 279–290.10.1016/j.medengphy.2004.01.006
  27. Subasi, A. (2012). Classification of EMG signals using combined features and soft computing techniques. Applied Soft Computing, 12(8), 2188–2198.10.1016/j.asoc.2012.03.035
  28. Subha, D. P., Joseph, P. K., Acharya, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of Medical Systems, 34(2), 195–212.10.1007/s10916-008-9231-z
DOI: https://doi.org/10.1515/slgr-2016-0044 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 21 - 31
Published on: Jan 23, 2017
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2017 Marta Borowska, Natalia Białobłocka, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.