Have a personal or library account? Click to login
Physarum Polycephalum Syllogistic L-Systems and Judaic Roots of Unconventional Computing Cover

Physarum Polycephalum Syllogistic L-Systems and Judaic Roots of Unconventional Computing

By: Andrew Schumann  
Open Access
|Mar 2016

References

  1. [1] A. Adamatzky, V. Erokhin, M. Grube, Th. Schubert, and A. Schumann, “Physarum Chip Project: Growing Computers From Slime Mould,” International Journal of Unconventional Computing, 8(4), 2012, pp. 319–323.
  2. [2] A. Adamatzky, “Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate,” Parallel Processing Letters, vol. 17, no. 04, 2007, pp. 455–467.10.1142/S0129626407003150
  3. [3] A. Adamatzky, Physarum Machines: Computers from Slime Mould (World Scientific Series on Nonlinear Science, Series A). World Scientific Publishing Company, 2010.10.1142/7968
  4. [4] A. Lindenmayer, “Mathematical models for cellular interaction in development. parts I and II,” Journal of Theoretical Biology, 18, 1968, pp. 280–299; 300–315.10.1016/0022-5193(68)90080-5
  5. [5] J. Łukasiewicz, Aristotle’s Syllogistic From the Standpoint of Modern Formal Logic. Oxford Clarendon Press, 2nd edition, 1957.
  6. [6] Y. Matveyev, “Symbolic computation and digital philosophy in early Ashkenazic Kabbalah,” [in:] Schumann, A. (ed.), Judaic Logic. Gorgias Press, 2010, 245–256.10.31826/9781463224318-012
  7. [7] K. Niklas, Computer Simulated Plant Evolution. Scientific American, 1985.
  8. [8] A. Schumann and A. Adamatzky, “Logical Modelling of Physarum Polycephalum,” Analele Universitatii Din Timisoara, seria Matemtica-Informatica 48 (3), 2010, pp. 175–190.
  9. [9] A. Schumann and A. Adamatzky, “Physarum Spatial Logic,” New Mathematics and Natural Computation 7 (3), 2011, pp. 483–498.10.1142/S1793005711002037
  10. [10] A. Schumann and L. Akimova, “Simulating of Schistosomatidae (Trematoda: Digenea) Behaviour by Physarum Spatial Logic,” Annals of Computer Science and Information Systems, Volume 1. Proceedings of the 2013 Federated Conference on Computer Science and Information Systems. IEEE Xplore, 2013, pp. 225–230.
  11. [11] A. Schumann, “On Two Squares of Opposition: the Leśniewski’s Style Formalization of Synthetic Propositions,” Acta Analytica 28, 2013, pp. 71–93.10.1007/s12136-012-0162-4
  12. [12] A. Schumann and K. Pancerz, “Towards an Object–Oriented Programming Language for Physarum Polycephalum Computing,” in M. Szczuka, L. Czaja, M. Kacprzak (eds.), Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P’2013), Warsaw, Poland, September 25–27, 2013, pp. 389–397.
  13. [13] A. Schumann, “Two Squares of Opposition: for Analytic and Synthetic Propositions,” Bulletin of the Section of Logic 40 (3/4), 2011, pp. 165–178.
  14. [14] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-Verlag, 1990.10.1007/978-1-4613-8476-2
  15. [15] Yisrael Ury, Charting the Sea of Talmud: A Visual Method for Understanding the Talmud. 2012.
  16. [16] J. J. M. M. Rutten, “Universal coalgebra: a theory of systems,” Theor. Comput. Sci., 249 (1), 2000, pp. 3–80.10.1016/S0304-3975(00)00056-6
DOI: https://doi.org/10.1515/slgr-2016-0011 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 181 - 201
Published on: Mar 17, 2016
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Andrew Schumann, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.