Have a personal or library account? Click to login
Visualization and Comparison of Single and Combined Parametric and Nonparametric Discriminant Methods for Leukemia Type Recognition Based on Gene Expression
Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6562–6566.10.1073/pnas.102102699
Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association, 97(457), 77–87.10.1198/016214502753479248
Duin, R. P. W., Juszczak P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D. M. J., & Verzakov, S. (2007). PRTools 4.1. A Matlab Toolbox for Pattern Recognition. Delft University of Technology.
Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139.10.1006/jcss.1997.1504
Freund, Y., & Schapire, R. E. (1998). Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics, 26(5), 1651–1686.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., et al. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286, 531–537.10.1126/science.286.5439.531
Hand, D. J., & Yu, K. (2001a). Idiot’s Bayes – not so stupid after all? International Statistical Review, 69(3), 385–398.10.1111/j.1751-5823.2001.tb00465.x
Heijden, F., Duin, R. P. W, de Ridder, D., & Tax, D. M. J. (2004). Classification, Parameter Estimation and State Estimation. An Engineering Approach Using MATLAB. England: Wiley.10.1002/0470090154
Kotsiantis, S. B, Zaharakis, I. D., & Pintelas, P. E. (2007). Supervised machine learning: A review of classification techniques. Artificial Intelligence Review, 26(3), 159–190.10.1007/s10462-007-9052-3
Krzyśko, M., Wołyński, W., Górecki, T., & Skorzybut, M. (2008). Systemy uczące się: rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości. Warszawa: WNT.
Lissack, T., & Fu, K. S. (1976). Error estimation in pattern recognition via L-distance between posterior density functions. IEEE Transactions on Information Theory, 22(1), 34–45.10.1109/TIT.1976.1055512
Marchiori, E., & Sebag, M. (2005). Bayesian Learning with Local Support Vector Machines for Cancer Classification with Gene Expression Data. In F. Rotlauf et al. (Eds) Lecture Notes in Computer Science: Vol. 3449. Applications of Evolutionary Computing (pp. 74–83). Lausanne, Switzerland. Springer Verlag.
Pękalska, E. (2005). The Dissimilarity representations in pattern recognition. Concepts, theory and applications (Doctoral thesis). ASCI Dissertation Series no. 109. Delft University of Technology. Delft, The Netherlands.10.1142/5965
Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., & Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442.
Rokach, L. (2009). Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics and Data Analysis, 53(12), 4046–4072.10.1016/j.csda.2009.07.017
Rokach, L. (2010a). Pattern Classification Using Ensemble Methods. In H. Bunke, & P. S. P. Wang (Eds.), Series in Machine Perception and Artificial Intelligence (Vol. 75). World Scientific Publishing.10.1142/7238
Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers – a survey. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 35(4), 476–487.10.1109/TSMCC.2004.843247
Xiong, M., Li, W., Zhao, J., Jin, W., & Boerwinkle, E. (2001). Feature (Gene) Selection in Gene Expression-Based Tumor Classification. Molecular Genetics and Metabolism, 73(3), 239–247.10.1006/mgme.2001.3193