Have a personal or library account? Click to login

Visualization and Comparison of Single and Combined Parametric and Nonparametric Discriminant Methods for Leukemia Type Recognition Based on Gene Expression

Open Access
|Jan 2016

References

  1. Ambroise, C., & McLachlan, G. J. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6562–6566.10.1073/pnas.102102699
  2. Breiman, L. (1996). Bagging predictions. Machine Learning, 24(2), 123–140.10.1007/BF00058655
  3. Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.
  4. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Belmont: Wadsworth.
  5. Dettling, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics, 20(18), 3583–3593.10.1093/bioinformatics/bth447
  6. Duda, R. O., Hart P. E., & Stork, D. G. (2001). Pattern Classification. New York: Wiley & Sons.
  7. Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association, 97(457), 77–87.10.1198/016214502753479248
  8. Duin, R. P. W., Juszczak P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D. M. J., & Verzakov, S. (2007). PRTools 4.1. A Matlab Toolbox for Pattern Recognition. Delft University of Technology.
  9. Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232.10.1214/aos/1013203451
  10. Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), 119–139.10.1006/jcss.1997.1504
  11. Freund, Y., & Schapire, R. E. (1998). Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics, 26(5), 1651–1686.
  12. Freund, Y., & Schapire, R. E. (1999). A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence, 14(5), 771–780,
  13. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., et al. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286, 531–537.10.1126/science.286.5439.531
  14. Hand, D. J., & Yu, K. (2001a). Idiot’s Bayes – not so stupid after all? International Statistical Review, 69(3), 385–398.10.1111/j.1751-5823.2001.tb00465.x
  15. Hand, D. J., Mannila, H., & Smyth, P. (2001b). Principles of data mining. Massachusetts Institute of Technology.
  16. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer, New York.10.1007/978-0-387-21606-5
  17. Heijden, F., Duin, R. P. W, de Ridder, D., & Tax, D. M. J. (2004). Classification, Parameter Estimation and State Estimation. An Engineering Approach Using MATLAB. England: Wiley.10.1002/0470090154
  18. Kotsiantis, S. B, Zaharakis, I. D., & Pintelas, P. E. (2007). Supervised machine learning: A review of classification techniques. Artificial Intelligence Review, 26(3), 159–190.10.1007/s10462-007-9052-3
  19. Krzyśko, M. (1974). Kwadratowe funkcje dyskryminacyjne. Matematyka Stosowana, II, 151–156.10.14708/ma.v2i2.1057
  20. Krzyśko, M. (1990). Analiza dyskryminacyjna. Warszawa: WNT.
  21. Krzyśko, M., Wołyński, W., Górecki, T., & Skorzybut, M. (2008). Systemy uczące się: rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości. Warszawa: WNT.
  22. Lissack, T., & Fu, K. S. (1976). Error estimation in pattern recognition via L-distance between posterior density functions. IEEE Transactions on Information Theory, 22(1), 34–45.10.1109/TIT.1976.1055512
  23. Marchiori, E., & Sebag, M. (2005). Bayesian Learning with Local Support Vector Machines for Cancer Classification with Gene Expression Data. In F. Rotlauf et al. (Eds) Lecture Notes in Computer Science: Vol. 3449. Applications of Evolutionary Computing (pp. 74–83). Lausanne, Switzerland. Springer Verlag.
  24. McLachlan, G. (2004). Discriminant Analysis and Statistical Pattern Recognition. Wiley.
  25. Morrison, D. F. (1990). Multivariate Statistical Methods (3rd ed.) (R. Zieliński, Trans.). New York: McGraw–Hill Book Company.
  26. Norusis, M. J, & SPSS, Inc. (1990). SPSS PC+ Advanced Statistics. Release 4.0. Chicago: SPSS Inc.
  27. Pękalska, E. (2005). The Dissimilarity representations in pattern recognition. Concepts, theory and applications (Doctoral thesis). ASCI Dissertation Series no. 109. Delft University of Technology. Delft, The Netherlands.10.1142/5965
  28. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., & Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442.
  29. Rao, C. R. (1973). Linear Statistical Inference and its Applications (2nd Ed.). New York: Wiley.10.1002/9780470316436
  30. Rokach, L. (2009). Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics and Data Analysis, 53(12), 4046–4072.10.1016/j.csda.2009.07.017
  31. Rokach, L. (2010a). Pattern Classification Using Ensemble Methods. In H. Bunke, & P. S. P. Wang (Eds.), Series in Machine Perception and Artificial Intelligence (Vol. 75). World Scientific Publishing.10.1142/7238
  32. Rokach, L. (2010b). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39.10.1007/s10462-009-9124-7
  33. Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers – a survey. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 35(4), 476–487.10.1109/TSMCC.2004.843247
  34. SAS/STAT (1990). User’s Guide. Version 6. Cary, NC, USA: SAS Institute Inc.
  35. SAS/STAT (2008). 9.2 User’s Guide. Cary, NC, USA: SAS Institute Inc.
  36. Skurichina, M. (2001). Stabilizing weak classifiers (PhD thesis). Delft University of Technology, Delft, The Netherlands.
  37. Xiong, M., Li, W., Zhao, J., Jin, W., & Boerwinkle, E. (2001). Feature (Gene) Selection in Gene Expression-Based Tumor Classification. Molecular Genetics and Metabolism, 73(3), 239–247.10.1006/mgme.2001.3193
  38. Webb, A. R. (2002). Statistical pattern recognition. England: Wiley.
DOI: https://doi.org/10.1515/slgr-2015-0043 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 73 - 99
Published on: Jan 6, 2016
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Małgorzata M. Ćwiklińska-Jurkowska, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.