Have a personal or library account? Click to login

Significance of Discriminant Analysis in Prediction of Pregnancy in IVF Treatment

Open Access
|Jan 2016

References

  1. Alunni, V., du Jardin, P., Nogueira, L., Buchet, L., & Quatrehomme, G. (2015). Comparing discriminant analysis and neural network for the determination of sex using femur head measurements. Forensic Science International, 253, 81–87. DOI:10.1016/j.forsciint.2015.05.02310.1016/j.forsciint.2015.05.023
  2. De Clercq, E. M., Leta, S., Estrada-Peña, A., Madder, M., Adehan, S., & Vanwambeke, S. O. (2015). Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: Comparing datasets and modelling algorithms. Preventive Veterinary Medicine, 118(1), 8–21. DOI:10.1016/j.prevetmed.2014.10.01510.1016/j.prevetmed.2014.10.015
  3. De Leon, T. B., Linscombe, S., Gregorio, G., & Subudhi, P. K. (2015). Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Frontiers in Plant Science, 6:374. DOI:10.3389/fpls.2015.0037410.3389/fpls.2015.00374
  4. Dobosz, M. (2001). Wspomagana komputerowo statystyczna analiza wyników badań. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  5. Fanos, V., Noto, A., Xanthos, T., Lussu, M., Murgia, F., Barberini, L., Finco, G., et al. (2014). Metabolomics Network Characterization of Resuscitation after Normocapnic Hypoxia in a Newborn Piglet Model Supports the Hypothesis That Room Air Is Better. BioMed Research International, 2014, 731620. DOI:10.1155/2014/73162010.1155/2014/731620
  6. Gajjar, K., Ahmadzai, A. A., Valasoulis, G., Trevisan, J., Founta, C., Nasioutziki, M., Loufopoulos, A., et al. (2014). Histology Verification Demonstrates That Biospectroscopy Analysis of Cervical Cytology Identifies Underlying Disease More Accurately than Conventional Screening: Removing the Confounder of Discordance. PLoS ONE, 9(1). DOI:10.1371/journal.pone.008241610.1371/journal.pone.0082416
  7. Gnoth, C., Schuring, A. N., Friol, K., Tigges, J., Mallmann, P., & Godehardt, E. (2008). Relevance of anti-Mullerian hormone measurement in a routine IVF program. Human Reproduction, 23(6), 1359–1365. DOI:10.1093/humrep/den10810.1093/humrep/den108
  8. Huang, Z. L., Chen, X. P., Zhao, Q.Y., Zheng, Y. B., Peng, L., Gao, Z. L., & Zhao, Z. X. (2015). An albumin, collagen IV, and longitudinal diameter of spleen scoring system superior to APRI for assessing liver fibrosis in chronic hepatitis B patients. International Journal of Infectious Diseases, 31, 18–22. DOI:10.1016/j.ijid.2014.10.03010.1016/j.ijid.2014.10.030
  9. Kim, S. C., Kim, M. K., Kim, Y. H., Ahn, S. A., Kim, K. H., Kim, K., Kim, W. K., et al. (2014). Differential levels of L-homocysteic acid and lysophosphatidyl-choline (16:0) in sera of patients with ovarian cancer. Oncology Letters, 8(2), 566–574. DOI:10.3892/ol.2014.221410.3892/ol.2014.2214
  10. Lee, U. Y., Kim, I. B., & Kwak, D. S. (2015). Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model. Forensic Science International, 253, 135e1-135e4. DOI:10.1016/j.forsciint.2015.05.01710.1016/j.forsciint.2015.05.017
  11. Maeda, N., Urabe, Y., Murakami, M., Itotani, K., & Kato, J. (2015). Discriminant analysis for predictor of falls in stroke patients by using the Berg Balance Scale. Singapore Medical Journal, 56(5), 280–283. DOI:10.11622/smedj.201503310.11622/smedj.2015033
  12. Milewska, A. J., Górska, U., Jankowska, D., Milewski, R., & Wołczyński, S. (2011). The use of the basket analysis in a research of the process of hospitalization in the gynecological ward. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 83–98.
  13. Milewska, A. J., Jankowska, D., Citko, D., Więsak, T., Acacio, B., & Milewski, R. (2014). The use of principal component analysis and logistic regression in prediction of infertility treatment outcome. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 39(52), 7–23.10.2478/slgr-2014-0043
  14. Milewska, A. J., Jankowska, D., Cwalina, U., Więsak, T., Morgan, A., & Milewski, R. (2013). Analyzing outcome of intrauterine insemination treatment by application of Cluster Analysis or Kohonen Neural Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 7–25.10.2478/slgr-2013-0041
  15. Milewska, A. J., Jankowska, D., Górska, U., Milewski, R., & Wołczyński, S. (2012). Graphical representation of the relationships between qualitative variables concerning the process of hospitalization in the gynecological ward using correspondence analysis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 29(42), 7–25.
  16. Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009). Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial neural networks among patients of the Department of Reproduction and Gynecological Endocrinology. Ginekologia Polska, 80(12), 900–906.
  17. Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 49–57.
  18. Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013a). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005–2010. Ginekologia Polska, 84(7), 609–614.10.17772/gp/1612
  19. Milewski, R., Milewska, A. J., Więsak, T., & Morgan, A. (2013b). Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using in the in vitro fertilization treatment Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 39–48.10.2478/slgr-2013-0033
  20. Pappas, A., Chaiworapongsa, T., Romero, R., Korzeniewski, S. J., Cortez, J. C., Bhatti, G., Gomez-Lopez, N. et al. (2015). Transcriptomics of Maternal and Fetal Membranes Can Discriminate between Gestational-Age Matched Preterm Neonates with and without Cognitive Impairment Diagnosed at 18–24 Months. PLoS ONE, 10(3). DOI:10.1371/journal.pone.011857310.1371/journal.pone.0118573
  21. Pires, L., Nogueira, M. S., Pratavieira, S., Moriyama, L. T., & Kurachi, C. (2014). Time-resolved fluorescence lifetime for cutaneous melanoma detection. Biomedical Optics Express, 5(9), 3080–3089. DOI:10.1364/BOE.5.00308010.1364/BOE.5.003080
  22. Prentice, P., Koulman, A., Matthews, L., Acerini, C. L., Ong, K. K., & Dunger, D. B. (2015). Lipidomic Analyses, Breast- and Formula-Feeding, and Growth in Infants. The Journal of Pediatrics, 166, 276–281.10.1016/j.jpeds.2014.10.021
  23. Radwan, J., & Wołczyński, S. (Eds.). (2011). Niepłodność i rozród wspomagany. Poznań, Polska: Termedia Wydawnictwa Medyczne.
  24. Singh, N., Malik, E., Banerjee, A., Chosdol, K., Sreenivas, V., & Mittal, S. (2013). Anti-Mullerian Hormone: Marker for Ovarian Response in Controlled Ovarian Stimulation for IVF Patients”: A First Pilot Study in the Indian Population. The Journal of Obstetrics and Gynecology of India, 63(4), 268–272. DOI:10.1007/s13224-012-0318-610.1007/s13224-012-0318-6
  25. Stanisz, A. (2007). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Tom 3. Analizy wielowymiarowe. Kraków, Polska: StatSoft.
  26. Veeck, L. L. (1998). An atlas of human gametes and conceptuses. New York: Parthenon Publishing Group.
  27. Vilke, A., Bilskiene, D., Šaferis, V., Gedminas, M., Bieliauskaite, D., Tamašauskas, A., & Macas, A. (2014). Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury. Medicina, 50(5), 263–268. DOI:10.1016/j.medici.2014.10.00110.1016/j.medici.2014.10.001
  28. Wegdam, W., Moerland, P. D., Meijer, D., de Jong, S. M., Hoefsloot, H. C. J., Kenter, G. G., Buist, M. R., et al. (2012). A critical assessment of SELDITOF-MS for biomarker discovery in serum and tissue of patients with an ovarian mass. Proteome Science, 10:45.
  29. Xia, L., Zhao, X., Sun, Y., Hong, Y., Gao, Y., & Hu, S. (2014). Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. International Journal of Clinical and Experimental Pathology, 7(10), 7220–7229.
  30. Zhao, J., Zhang, Q., Wang, Y., & Li, Y. (2014). Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reproductive BioMedicine Online, 29(3), 291–298. DOI:10.1016/j.rbmo.2014.05.01110.1016/j.rbmo.2014.05.011
DOI: https://doi.org/10.1515/slgr-2015-0038 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 7 - 20
Published on: Jan 6, 2016
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2016 Anna Justyna Milewska, Dorota Jankowska, Urszula Cwalina, Dorota Citko, Teresa Więsak, Brian Acacio, Robert Milewski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.